
C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(1 of 8)

THE BCS PROFESSIONAL EXAMINATION
Diploma

April 2004

EXAMINERS’ REPORT

Software Engineering 1

General
This was the first setting of this examination, with mostly satisfactory results.

Candidates mostly avoided the temptation to write a lot of descriptive material and focussed on
the evidence-based reasoning that the examiners were seeking.

Question 1
1. The cost of maintenance for the development and deployment of a software product has often been linked with

the cost of quality. Give your reasons for this link with the cost of quality. (25 marks)

Answer Pointers
The question expected a balanced answer, starting with description/explanation of cost of
maintenance, then same approach for cost of quality, then some synthesis of views to test for
linkage.

Pressman Ch 20 remarks on cost of maintenance rising to expected 80% of software budget
during 1990s. Factors driving this are direct costs of the mini-lifecycle analyse, evaluate, design
code, re-implement and the indirect costs of customer dissatisfaction, degradation of performance
by ‘pathological’ errors (e.g. propensity of Win95 and Win98 to virus attack), and delay to other
programmes as resource is diverted away to maintenance. Candidates are not expected to quote
from sources texts. Up to 5 marks.

Both Pressman Ch 2 and Sommerville Ch 24 locate maintainability, portability and efficiency as
critical quality attributes that are rarely listed in any specifications document. An aim of quality
management is to develop functional software with one or more of these key product attributes
embedded, as appropriate. Sommerville quotes Crosby’s definition that “a quality product is one
that meets its specification”. Candidates are not expected to quote from sources texts. Up to 5
marks.

This analysis should leads to a realisation that much hands-on quality is located during the
development phases, while the lifetime cost of the product runs away in the maintenance phase
because lifetime quality attributes have been neglected during development. Up to 7 marks for
linkage of conclusion to previous discussions.

The suggestion is that if lifetime quality attributes were managed into the development phase, this
could be achieved for less cost that retrospectively repairing during maintenance. Is this a realistic
suggestion? What measures exist to test developing product for acquisition of lifetime quality
attributes? Up to 8 marks for quality conclusion linked to previous discussion.

Examiners’ Guidance Notes
Answers that dealt in a ‘one hand this, other hand that, and this is synthesis’ way with a traceable
argument that is supported by textbooks or experiences earned high marks.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(2 of 8)

Few answers followed the model above. Many answers failed to link development costs with
maintenance costs, and instead interpreted both costs as incurred during the development phase.

Not many answers followed the ‘debating’ style; first describe features of element-1 (in this case,
Cost of Maintenance), the features of element-2 (cost of quality), then a comparison of these
features , either points of similarity or points of difference. Most answers dealt summarily with a
description of the two costs without drawing any conclusions about possible linkages. While a
survivable exam technique, the examiner would like more confidence that candidates can perceive
some wholeness to the life cycle model that must include total lifetime costs for a software
product.

Question 2
2. a) Explain what is meant by the phrase paradigms of software engineering. (9 marks)

 b) Explain the purpose of each of the following in the software engineering process. Give an explanation for a

SUCCESSFUL outcome and also an UNSUCCESSFUL outcome. What are the consequences of a
successful outcome? What are the consequences of an unsuccessful outcome?

 i) Review (8 marks)
 ii) Validation (8 marks)

Answer Pointers
a)
Pressman (Ch 1) uses the phrase ‘paradigms of software engineering’ in the sense of modelling
an abstraction that represents the processes of software development and software product
lifecycle. Sommerville (Ch3) divides software process models into ‘one-pass’, such as Waterfall
model, evolutionary development, re-use-oriented development; and ‘iterative’, such as
incremental development, and Spiral-model development. Pressman (Ch1) goes on to include
4GL ‘generator’ models.

So, paradigms of software engineering means the set of different ways in which a disciplined
software development process can be described and still make sense with the tools used, the
functionality developed and the expectation of the customer.
Candidates are not expected to quote from sources texts. Up to 9 marks for a reasoned
description with examples.

b)
The purpose of a software review is to examine the outputs from a specific activity or
development phase against the requirements laid on the activity/phase at the start to test for
satisfactory achievement of outputs from inputs. 3 marks.

A successful outcome of a review means that the outputs are baselined as ‘achieved’ and
become the input definitions for the next activity or development phase. 2 marks.

An unsuccessful outcome of a review means that the outputs do not meet their expected
performance. This results in a rework of the activity or phase at extra cost in time and money to
repair the outputs so that they meet the specifications laid on them at the start. 3 marks.

The purpose of validation is to test user requirements against built functionality and attributes of
the software product. 3 marks.

A successful outcome of Validation is customer pays final bills. Consequence is income received
by developer. 2 marks.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(3 of 8)

An unsuccessful outcome to validation is that developer embarks on rework at zero cost to
client in order to repair product to meet customer specification. Consequence is that developer’s
income is delayed. 3 marks.

Examiners’ Comments
Answers here show that students find bookwork easier than developing examples under exam
conditions. The question required three definitions and one explanation, but also three examples
associated with the definitions. A popular question with good results.

Most candidates associated ‘paradigm’ with ‘software process development model’ and earned
good marks in section a).

However, very few candidates took a ‘process’ view of the Review event. Most could describe
what it was, and many could describe the result of a failure to pass a Review in the development
process. Strangely, few appreciated the positive side of a successful Review in the development
process.

For a Validation review, very few candidates appreciated the effects, both positive and negative,
on developer’s income if a Validation events is successful or not. The inevitable linkage of a client
with a Validation event ties income to a successful result.

Question 3
3. a) In the context of software design, define what is meant by the following design principles and illustrate each
 with an example piece of design:
 i) transparency, also known as information hiding
 ii) abstraction, and
 iii) modularity (21 marks)

 b) Explain what is meant by the concept of requirements traceability with respect to software design.
 (4 marks)

Answer Pointers
a)
i) Transparency, or information hiding, is an implementation of ‘need to know’ (see Sommerville
Ch 18.1). Only those who need a specific piece of information for their duty are given that
information. In software design, this most frequently refers to separation of function from
implementation. The user can call the function name but cannot interfere with the implementation
of that function.

For example, the Java definition of a queue makes available what it can do without revealing how
it is done:

Interface Queue {
public void put Object o);
public void remove (Object o)
public int size ();

 } //Queue

Up to 7 marks for definition and illustration.

ii) Abstraction is described in Pressman Ch 10.3 as a technique of layering a problem. At higher
levels of abstraction, a solution is stated in broad, non-specific, terms using the language of the
problem environment. At lower levels of abstraction, there is a more procedural expression of how

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(4 of 8)

the solution is implemented. In software design, subsystems are frequently specified at a high
level of abstraction in order to define their function without compromising their implementation.

For example, (see Sommerville Ch 9.2) an abstract subsystem definition will tell
Data types or object classes available
Names for each
Operations on each
Syntax for using each
Axioms for semantic description of each.

A candidate should show either this abstract level of answer, or a detailed answer showing how
such an interface might be represented in a programming language. Up to 7 marks for definition
and illustration.

iii) Modularity (see Pressman Ch 10.3) is a technique of software architecture whereby software is
divided into separately named and addressable components, called modules, that are integrated
(after development) to satisfy problem requirements. Modularity is credited with being the single
biggest contribution to intellectual management of the complexity of a software product.

To illustrate modularity, a candidate is expected to draw some form of module breakdown chart.
Up to 7 marks for description and illustration.

b) Requirements traceability is the capability to track all design components and deliverables that
result from a specific requirement specification (forward tracking). Also it can mean the ability to
identify which requirements generate any given deliverable (backward tracking).
Up to 4 marks for a reasoned answer.

Examiners’ Comments
Answers here show that students find bookwork easier than developing examples under exam
conditions. The question required 3 definitions and one explanation, but also three examples
associated with the definitions.

The requirement in the question to develop examples under exam conditions may have put some
students off even attempting this question. Even with the bookwork, some students simply picked
up on keywords and reproduced inappropriate notes about design in general.

As the associated examples required more thought and effort, more marks were awarded for
them. Thus, an answer without examples could only achieve a maximum of 10 marks as each
example was worth 5 marks.

Students need more practice studying and producing examples of design concepts. Chapter 10 of
Pressman contained all the bookwork for part a) of this question along with examples. Going
beyond Pressman's examples was expected for the student to receive top marks. While the
material is covered by Sommerville, it is not all covered in a single chapter.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(5 of 8)

Question 4
4. a) Describe the features and capabilities of a CASE tool with which you are familiar. Give an example of a
 CASE tool with which you are familiar and describe how some of the features and capabilities are exhibited.
 (10 marks)

 b) Give TWO examples where this CASE tool has shifted the engineering emphasis of the development

paradigm in which it is used. (15 marks)

Answer Pointers
a)
CASE stands for Computer Aided Software Engineering; it can be used to mean any computer-
based tool for software planning, development, and evolution.

A description of any particular tool that clearly shows the candidate’s appreciation of method-
supporting or lifecycle-supporting tool will be accepted (Pressman Ch1, p24). Alternatively,
(Sommerville Ch 3.7) CASE can be analysed by function, by process and by integration.

Pressman’s set of likely characteristics follows. Sommerville’s is longer.

Structured Analysis (SA), Structured Design (SD), Editors, Compilers, Debuggers, Edit-Compile-
Debug environments, Code Generators, Documentation Generators, Configuration Management,
Release Management, Project Management, Scheduling, Tracking, Requirements Tracing,
Change Management (CM), Defect Tracking, Structured Discourse, Documentation editing,
Collaboration tools, Access Control, Integrated Project Support Environments (IPSEs), Intertool
message systems, Reverse Engineering, and Metric Analysers.

Up to 10 marks for a fully-featured answer that showed life-cycle appreciation.

b)
The core shift is away from coding towards other human-intensive areas of development.
Examples of shifted paradigm (Sommerville Ch 3.7) include

• Support for individual tasks such as consistency checking, compiling, test results
comparisons.

• Workbench support such as drawing tools for specification and design with integration
capability to check or infer correctness.

• Environments that package a substantial part of the development into a disciplined and
defined methodology.

Any two choices with illustration of the shift of emphasis gets full 15 marks. Less are graded down
accordingly.

Examiners’ Comments
Part a) was well answered. Many candidates drew from experience to describe CASE tools with
which they were familiar. A few candidates confused ‘tool’ with ‘methodology’, for example
asserting that SSADM was a development tool, or that structured programming was a
development tool. However, on the whole, this part was well answered.

However, in part b), few candidates could formulate two distinct examples of any change in
working practices caused by the ready availability of tools. Candidates must reflect more from their
learning on to their practical experience of how they develop software.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(6 of 8)

Question 5
5. a) Because software is so easy to change, for example by a few keystrokes, software configuration
 management is often made difficult.

 Explain why software is so easy to change, and give TWO examples of your interpretation with reference to
software development and maintenance. (10 marks)

 b) The following is an outline specification for a small project. Discuss the criteria you would use to determine
the life cycle model that this project should follow, and make a recommendation about selecting a suitable
life cycle model. You should assume you would have high-productivity development tools. (15 marks)

“This project is about developing visual and graphical web-presentations to show the client what
graphical effects are possible with a web site.

 “The client owns some houses for renting, preferably to contractors such as consultants and other
‘long-stay’ business managers for durations of 3-6 months at a time. More and better views of the
houses and their interiors will increase the number of rentings.

“The client also wants to develop other lines of business to increase his income. He has an idea to
start workshop events about teaching skills such as making glass models or knitting complex designs.
He suggests the website should also have ways to illustrate and promote this with such things as
downloads of patterns, diagrams, hints-and-tips or other knowledge-intensive ‘free’ giveaways as part
of rewarding visitors to come to the site and be told about – frequently refreshed – dates for workshop
events.“

Answer Pointers
a)
‘Easy to change’ is a characteristic rooted simply in the speed of editing, compiling, linking etc. of
software – especially assembler code and 3GL code - to form a piece of functionality. Another way
of expressing this is that software engineers don’t ‘produce’ software (as does a Production
Engineer) but they clone their prototypes.

Root of the answer is flexibility/speed coupled with electronic filing systems coupled with on-
screen editing.

Examples (Pressman Ch 20 p678) any two from

Subprogram deleted or changed
Statement label deleted or changed
Identifier deleted or changed
Changes made to improve execution performance
File open or close sequence is modified
Logic operations are modified
Design changes are cascaded into major software adaptations
Changes made to logic operations at boundaries of data.
Redefined global or local variable value
Redefined file or record format
Increment or decrement to an array size
Change of global data
Re-initialisation of flags and pointers
Re-arrangement of arguments in a subprogram parameter list

5 marks for any two.

One set of criteria might be stability of requirements and productivity of tools.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(7 of 8)

b)
In the scenario given, requirements are not stable (the job to do is vague). but the tools available
are productive. The vague work consists of the look-and-feel of the website, and the range of
services it offers. Such HCIs are known to be hard to get right, so the issue to management is
getting user involvement in approval of the chosen web designs.

Most lifecycle ‘methods’ are variants of incremental development, so the question becomes which
incremental development method suits ‘getting the users involved’? A series of exploratory design-
build-test episodes, such as evolutionary prototyping, seem to fit the bill.

A balanced argument choosing suitable criteria and analysing the context as given against them,
then identifying issue(s) of concern, then identifying a life cycle that has an ability to cope with
these issues would earn marks as follows:
4 marks for the criteria (2 each)
4 marks for analysing the features of the scenario in contact of the criteria (2 marks each)
and finally, 4 marks for identifying a life cycle model and giving the rationale (2 marks each).

Examiners’ Comments
In part a), few students appreciated that a simple keystroke is enough to change a software
component. Every item in Pressman’s list in the model answer is caused by a few keystrokes that
immediately remove any confidence that has been built by testing because the integrity of the
tested software has just been destroyed!

In part b), few answers followed the detail of the model answer, though many candidates
produced alternative, valid answers. A valid answer was one that defended choice of lifecycle by a
discussion of criteria in the context. Some answers gave a solution without any reasons drawn
from the context. Some answers gave reasons for choosing a lifecycle model, but these reasons
were nothing to do with the scenario provided in the question.

Some answers could not come to any conclusion, and instead discussed several lifecycle models
that might suit and refused to decide on any one of them.

Question 6
6. a) Briefly describe TWO issues of product quality that should be considered during the planning process of a
 software development for EACH of the following, with your reasons.
 i) stable requirements, low productivity development tools1 (9 marks)
 ii) unstable requirements, high productivity development tools2 (9 marks)

Notes
1 Low productivity means tools that require intensive hand-crafting, like assembly language and 3GL
programming systems without specific support for requirements engineering.
2 High productivity means tools that provide specific support for requirements engineering, or software
generator environments.

 b) For the situation in ii) above, identify the roles for two other people whose skills complement those of a
 software engineer. Give your reasons. (7 marks)

Answer Pointers
a)

Sommerville Ch 24.2 echoes the difficulty of a ‘raft’ of quality attributes and recommends
selection of critical attributes.

C:\Documents and Settings\srogers\Desktop\SEng1Report2004.doc
(8 of 8)

i) stable requirements, low productivity development tools’. Clearly, this is a slow
development against defined targets. 4 marks.

The attributes to manage tightly belong to the original requirements specification.
Following this or similar reasoning, any two attributes of function or performance will be
accepted. 5 marks.

ii) unstable requirements, high productivity development tools. Clearly, the speed of
development becomes part of the requirements definition/convergence process. 4 marks.

 Attributes to manage here are emergence of customer-agreed business-facing
requirements and incremental build-up of functionality to deliver these requirements.
Following this or similar reasoning, any two attributes of form or function will be accepted. 5
marks.

b)
Aside from the expert in the toolset, the team (Sommerville Ch 22.2) should contain a domain
specialist, someone who knows what is wanted (perhaps someone from the customer group), and
an integration/test specialist, someone who knows the failure modes of the products from the
toolset and is probably equivalent in skill to the toolset expert but acts as a reference or test agent.
Alternative expressions of these roles are communication specialist (client person) and test
specialist (engineer person). Up to 7 marks for two roles and descriptions.

Examiners’ Comments
Many candidates addressed this question well, understanding the need for requirements control
when using low productivity, but few had insight into client-relations if using high-productivity tools.

Most answers realised the need for documentation specialist and a testing specialist, which were
very appropriate answers.

