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SUMMARY

Introduction; Principles of quantum mechanics; Operators and
observables; The time-dependent Schrodinger equation, stationary
states and transitions; Angular momentum in quantum mechanics; The
harmonic oscillator and its applications in chemistry; Anharmonic
vibrations and molecular inversion: Perturbation theory.

READING LIST

This set of lectures is designed to be largely self-contained. You may,
however, find the following book especially helpful:

Molecular Quantum Mechanics, by P. W. Atkins and R. S. Friedman
(Oxford University Press).

INTRODUCTION

Modern chemistry is firmly based on the concept of atoms and
molecules as structural entities, and a very important part of chemical
physics consists of experiments designed for material characterization
and molecular structure determination. For the great majority of such
experiments, and particularly for those based upon spectroscopic
techniques, the interpretation of results is based upon quantum
mechanics. Thus quantum mechanics plays a vital role not only in the
description of atomic and molecular physics, but also in the evaluation
of results from a wide range of experimental methods. The
introductory lecture course is designed to provide a detailed
introduction to the concepts and methods most relevant to chemical
and physical applications, particularly to the interpretation of spectra.



It is important to develop an understanding of the place of the theory
within the framework of the rest of science. Quantum mechanics is
quite distinct from earlier quantum theory, which was centred upon
the wavelengths and frequencies of light absorbed or emitted in atomic
transitions. The Planck relation, AE = hy, first established a simple
relationship between the frequency v of optical radiation and a
difference in energy, AE, between the discrete states involved in an
atomic transition. Einstein’s treatment of the photoelectric effect
incorporated the same quantum energy in the relation T = hv— ¢ for
the kinetic energy T of each released photoelectron (¢ being the surface
work function). Quantum mechanics, however, which leads to our
present understanding of electron wavefunctions and molecular
orbitals, is built upon a much broader base of assertions about the way
the physical world operates. Because of this, it is a theory that has
extraordinarily wide significance, extending to issues such as human
consciousness and morality.

We shall begin by looking in detail at the foundations upon which
quantum mechanics is built, known as the Postulates of Quantum
Mechanics. Self-consistent but unproven, they nevertheless provide a
basis for constructing all the detailed applications which prove so
hugely successful, producing results that agree with experiment and
making predictions that also prove correct. In this respect they have a
similar status to Newton’s Laws of Motion in classical physics.

THE POSTULATES OF QUANTUM MECHANICS

There are several fundamental postulates, and they can be expressed in
many different ways. I like the statements given in an old book by I. N.
Levine called Quantum Chemistry, which in a marginally modified form
are as shown on the handout. In general the wavefunction y is
complex, but according to the Born interpretation, its physical
significance lies in the representation of a probability density by the
quantity |1//|2. So since total probability must amount to unity, we have;

J|1//|2dz' =1

This is known as the normalisation condition on the wavefunction.



Postulate 1 The state of any system is described by a function y of the
particle coordinates and time. This function, called the wavefunction
state function (or state function) contains all the information that can be
determined about the system. It is further postulated that y is single-
valued, continuous, and quadratically integrable.

Postulate 2 To every physical observable there corresponds a linear
Hermitian operator. To find this operator, the classical-mechanical
expression for the observable is written down in terms of Cartesian
coordinates and corresponding linear momentum components; then
each coordinate x is replaced by the operator x x, and each momentum
component px by the operator —i7d/ox .

Postulate 3 The only possible values that can result from measurements
of a physical observable G, say, are the eigenvalues gi of the equation

éWi = Qv

where the operator corresponds to the property G. The eigenfunctions
y are required to be well-behaved.

Postulate 4 The eigenfunctions of any linear Hermitian operator
representing a physical observable form a complete set.

Postulate 5 If' y is the normalised state function of a system at a given

time, then the average value of a physical observable at that time (the
expectation value) is given by;

<G>=Jz/éwdr

Postulate 6 The time development of the state of an undisturbed
system is given by the time-dependent Schrodinger equation

o) VA
ih—=H
st 7

where H, known as the Hamiltonian, is the energy operator.

To proceed further we shall need to master some simple mathematics.



OPERATOR ALGEBRA

Consider a quantum mechanical ‘ket” representation of
the state of a book | > Various things can be done
with it, represented by quantum operators (designated

with a ‘carat’ or ‘hat’, )

You can read it — operator R. .
The output of this ‘measurement’ is the subject matter A;

R|I0) = 4 3)

The output of this ‘measurement’ is the structural image

v You can take an X-ray photograph of it — operator X

X

ey

RlE2) = i)

A ¢ Remember, an operator always operates to its right.

When two operations are performed, the sequence can matter in some
case, though not in others. Consider these two:

Ii)Z‘> = Iigp‘> = ﬁ,gp‘>

XR|E) = XA|E) = pA|C1)
= Ao|)

-, RX|E) = XR| )
- (RX - XR)|E2) =0



[R,X]=(RX - XR)=0

We call [R, X] the commutator of R and

X, and if it is zero we say the operators commute.

|> is an eigenstate of both operators

R and X, and so these operators do
commute

But consider, you can also burn the book — operator B .

The output of this ‘measurement’ is just ashes!

30 =)

So | > is not an eigenstate of B. Combining the operations Band R

for example, we have;

I§FA{\>= I::M\>:/1\Q>
” Iﬁé‘>

Thus [é,é] #0

Burning and reading are operations that do not commute.

© D. L. Andrews
September 2009



OPERATORS AND COMMUTATORS

The concept of commutation relates to the fact that, although different
operators are additive such that M +N gives the same result as N+M,
their product can often give a different result according to the order of

operation. If for example (31 and (32 are operators corresponding to

different dynamical variables of a particular system, we define their
commutator as:

For example take the operators x and d/dx; what is the commutator
[x,d/dx]? Now because the commutator involves only operators and is
itself therefore an operator, it is easiest to see what this means if we
apply it to some unspecified function, say y;

d],_dv_d 3w _ d_V/J__
[X’dx}”_xdx dx(xw)_xdx (Wﬂdx i

In operator form, since the above result is valid for any function v,
then we have;

g}

Class Exercises

1. For the function ¢ = asin x+bx®> determine the result of the
operations M ¢, N¢ and p,¢#, where;

A d e . d " .. d
M=3—; N=21-50—; =—lii—.
dx gdx2 Px dx

2. For the function y = axsin X + bx, determine the results
MNy and NMy .



3. Write down the explicit form of the quantum mechanical operators
for position and momentum in the x-direction, X and p, respectively.

Work out their commutator [X, p, |, by applying it to an arbitrary

function f. Comment on the physical significance of the result, and state
which quantum principle it illustrates.

4. Work out the result of the following commutators:

[ B,.[% B,]] and[f,x,[;(z’ ﬁxﬂ .
EIGENFUNCTIONS AND EIGENVALUES

In general, quantum mechanical operators are formed according to the
prescription of postulate 2. Let us focus on a special kind of operator
equation, of the form:

Gg = g¢

in which the carat denotes an operator. This is a general equation of
the class to which the Schrodinger equation obviously belongs. In
general a function such as ¢ which, when operated on by a particular
operator gives just a multiplier g times itself, is termed an eigenfunction
of that operator. The multiplier g is termed the corresponding
elgenvalue. For example the wavefunction " is an eigenfunction of the

quantum mechanical momentum operator —ihdi with eigenvalue 7K.
X

It is very significant that, although the operator and the wavefunction
in the above example are both are complex, the momentum eigenvalue
is real. In fact we shall see that operators represent acts of
measurement, and therefore all operators corresponding to physical
observables have real eigenvalues. Such operators are called Hermitian
(after Charles Hermite, a French mathematician).




Hermitian operators have to satisfy the equation;
J‘w*él//dx = J(égp) wax

Although the above equation appears a bit abstract, it does lead to some important
results, as we shall see later. Notice that the order here is important, because on the left
the operator acts upon y and on the right upon ¢. It is readily proven that the
eigenvalues associated with elgenfunctions of a Hermitian operator have to be real, as
should obviously be the case if they represent values for a real observable. For example
both the momentum operator and the Hamiltonian operator are Hermitian since they
correspond to the real physical observables of momentum and energy.

DIRAC BRACKET NOTATION

Frequently in quantum mechanics we encounter integrals of the kind
appearing above. A shorthand bracket notation die to Paul Dirac writes
these as follows:

(9|Glw)=[ o Gydx

Corny though it sounds, the left- and right-hand ends of the expression
are referred to as the ‘bra’” and ‘ket’ respectively. Whenever a complete
bra(c)ket appears, integration is taken for granted. The normalization of
a wavefunction y, for example, is simply written as;

(ylw)=1

Note that when there is a set of wavefunctions ¢ (such as correspond to
the various states of a hydrogen atom, for example), where the label ‘i’
is a quantum number or numbers designating a particular member of
the set, we may just write the label in the ‘bra” and ‘ket” as a further
simplification of notation, e.g.

(i[A5) = (0 |Alg,) = o A




QUANTUM MEASUREMENTS

Following on from Postulate 3, we can now address some matters
concerning the quantum theory of measurement. The significance of
operator commutation is as follows:

If a system in a given state is to have exact values for two different
physical observables, the corresponding operators must commute.

We can easily prove this since the only exact values we can obtain are
eigenvalues of the operators. Suppose we consider a state |¢) whose

wavefunction is an eigenfunction of two operators F and G, with
eigenvalues f and g respectively. We can write;

F|g)=f|4) and G|g) =g|9)
- FG|g)=F(G|¢))=F (a|4))= oF |¢) = of |#);
GF |¢)=G(F|g))=G(f|4))= fG|g)= fa|p)

- FG|g)-GF|g)=0 -(FG-GF)[g)=0 ~|F,G|=0

This means that the two dynamical variables corresponding to the two
operators can only be simultaneously measured if the operators
themselves commute. For example, the case of position and
momentum (Class Exercise 3) illustrates Heisenberg’s Uncertainty
Relation; we are not able to simultaneously obtain exact values for both
these variables from any system. In the case of energy and angular
momentum, however, it can be shown that the appropriate operators
do commute, and that is why in describing atomic and molecular states
both energy and angular momentum can be simultaneously specified.

Generally, any given operator will have a number of different
eigenfunctions, each associated with a different eigenvalue (e.g.
various wavefunctions, each with a different energy). We can pose the
question: is there any relationship between different eigenfunctions of
the same operator? To take this further, we note that in Dirac notation
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~

a Hermitian operator G satisfies the relation <¢‘é‘w>:<(//‘é‘go>*

(exactly equivalent to the relationship in the box on page 8). To press
the point, we can be specific and consider the implications of the
Hamiltonian operator being Hermitian (which it must be, simply
because it represents energy, a physical observable; accordingly its
eigenvalues are real).

Consider two states with different energies,

H|4)=E|4)and H|¢)=E,|¢)

Forming a Dirac bracket;

(4|H|8,)=(4|E,|4,) =E, (4]e).

Because the Hamiltonian is Hermitian, the above result must be the same as we get from:

(,|H]4) =(4|E\|4) =E (8,|¢) =E.(¢]8,).

( E, - E1)<¢-L |¢2> =0. Since we specified E, # E it follows that <¢1 | ¢2> =0.

The above example illustrates what is known as the principle of
orthogonality. In general we conclude that:

Eigenfunctions of the same Hermitian operator with different
eigenvalues are orthogonal, in the sense that <(,/5i ‘¢j> =0ifi#]

What is the physical significance of this result? In fact it is the origin of
energy and angular momentum conservation in the formalism of
quantum mechanics. For example if ¢ and ¢ in the above example

were not orthogonal, a system initially in one state could drift into the
other state with a different energy, violating energy conservation.

In the light of Postulate 4 it also means that any function of the same
variables can be uniquely expressed in terms of the complete set of
functions — just as the geometric orthogonality of x, y and z unit vectors
means that we can unambiguously represent any point in 3D space by
a linear combination of those vectors. So for example, even the
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wavefunction for a very disturbed molecule is expressible in terms of
unperturbed states — the usual solutions to Schrodinger’s equation.

In Dirac notation the general orthogonality result can be neatly

combined with the normalization condition as <¢, ‘¢j > =3, , where the

term on the right is the Kronecker delta ( zero if i # j but unity if i =J).

Class Exercises

5. Write down in the simplest form of Dirac notation an expression of
the orthonormality of a set of states ¢:.

6. Write down in Dirac notation the eigenvalue equation for states ¢,
eigenfunctions of an operator A with associated eigenvalues a.

7. Write down the Dirac bracket for the expectation value of an
operator A for a system with an arbitrary wavefunction 1. Show that if
the system is in one of the states ¢: referred to in question 6, then the
expectation value is the same as the eigenvalue.

Example of an application. Write down the expansion postulate in Dirac notation. Using the
class exercise results find an expression, in terms of the eigenvalues ai, for the expectation
value of an operator A , when the wavefunction 1 is not an eigenstate of that operator.

The wavefunction ¢ can be expressed as a linear combination of the basis set, say ¢i;

lw)=>c|4), whichalsoimpliesthat (y | = c; <¢j ‘
i j

The required expectation value is thus:

<‘V|A|’/’>:szlc?ci <¢j|/3|¢.>=220’}0i <¢,~ |ai|¢i>

= 22508 <¢j |¢'> =2.2.C6ad; =D cca = Z|Ci|2 a,

The result, based on Postulate 5, signifies a weighted average of the
values that would be determined in each if the states i, hence:

|Ci |2 signifies the probability of finding the system in the state |¢%>

Read about Schrodinger’s cat!
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We have come to the last of the Postulates of Quantum Mechanics,
which gives the Schridinger equation in a form that may be new to you.
The given result is perfectly general; to recover the more familiar form
we must suppose that the Hamiltonian operator H is not explicitly
dependent on time. This only means that the energy of the system does
not vary, in other words our system is a closed one. It is then possible

to factorise the time-dependence of the wavefunction as:

¥ (r)=ly(r)lew)
A (o) =in <l (n)]o()

@A () (1) =l (1)in=]o 1)

Now dividing through by |y (r))|& (t));

) H(r)|w (r))=in———10(t))

Since in the last line the left-hand side involves only spatial coordinates,
while the right-hand side involves only time, the only way the two sides
can invariably equate with each other is if each is a constant, say E. So
we obtain two separate equations;

1

v (r))

H(O)ly (r)=E, -~ | H(r)|y (r)=E[w(r))

Ihm%‘g(t» -E, - ‘H(t)> _ i

The first (highlighted) equation is of course the usual time-independent
Schrodinger equation. The relationship below it signifies that each

spatial wavefunction ‘y/(r)> carries a time-dependent phase factor e ™",

one which disappears in the probability density, since ¥*W¥=
(v *e®™")(y e™") = y*y. Since time drops out of this, and any other
measurement, we regard this as denoting a stationary state of the system.
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PROBLEMS ON OPERATORS

1. Write down two equations to represent the fact that a given
wavefunction is simultaneously an eigenfunction of two different
Hermitian operators. What conclusion can be drawn about these
operators?

2. Write down two equations to represent the fact that two
different wavefunctions are simultaneously eigenfunctions of the
same Hermitian operator, with different eigenvalues. ~What
conclusion can be drawn about these wavefunctions?

d 2
3. Resolve the following commutator: {W ax® +bx+ C]

d ,d
X—, X°— |.
4. Evaluate [ . dx}

D. L. Andrews
October 2009

Answers

The operators commute.
The wavefunctions are orthogonal.

2a+2(2ax+b)§—x.

Lo

0.
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THE SIMPLE HARMONIC OSCILLATOR

With the tools we now have at our disposal, we can in principle tackle
any problem. A very useful and informative example is the case of
simple harmonic motion, a type of behaviour that arises in a huge
number of systems in chemistry and physics — for example in
molecular vibrations, the thermal properties of crystals, and the
quantum theory of light. Photons themselves are a form of simple
harmonic motion — their electric and magnetic fields follow a sine wave.

What we shall find, is that we can solve the Schrodinger equation for
any such system, just by using simple operator algebra, without even
needing to find the wavefunctions.

Let us start with the classical energy expression,

Eassical = 2MV2 +3kx? ,

where we are assuming back and forth motion of a particle in the x-
direction, about the origin x = 0, with v being the velocity and m the
particle mass; k is the force constant. Our first task is to determine the
quantum mechanical Hamiltonian, by converting the above expression
into quantum operator form. We don’t have an operator for velocity
but we do for momentum, and so using px = mv we first rewrite the

above as;

2
E =Pk

classical — 2
2m

Now from Postulate 2 we substitute the operator for momentum in the
x-direction (and the position variable x doesn’t change) so that we find;
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2 2 2 2
=—h—d—2+%kx2 =—h—d—2+%ma)2x2
2m dx 2m dx

In the last step, we have used the relationship for the classical circular
frequency of oscillation, o =./k/m .

From here onwards, we drop the carat over the H since we shall never
use that symbol for anything other than the Hamiltonian operator.
Now clearly the Hamiltonian has the general form of a sum of two
terms, one quadratic in momentum and the other, quadratic in
position. For convenience we can write H in terms of two new
operators P and Q;

H=(P*+Q*)ho,

where the 7o has the units of energy so that both P and Q are
dimensionless. Explicitly, we can have;

P=—i Li’ Q: %X
2mew dx \ 2h

We can easily find out the commutation properties of our two
operators I and Q;

Pl 5| -3

The result can immediately be used to rewrite the Hamiltonian in
another form, since we can now write;

P’ +Q*=(P*+Q’ +iQP-iPQ+iPQ-iQP)
=(P+iQ)(P-iQ)+i[P,Q]=(P+iQ)(P-iQ)+1

For an even more convenient shorthand we can introduce two new
operators, defined as;
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a=P-iQ; a'=P+iQ

so that the Hamiltonian eventually becomes expressible as:

H :(a+a+%)ha)

In the following, we shall need nothing more than this result, and the
commutation relation for a and a*, which is easily found.

Class Exercise

8. Prove that [a, a*] =1

To proceed, we can reason that the solutions to the time-independent
Schrodinger equation are expressible as;

H|m=En)
which really just says that the wavefunctions can be labeled by some
quantum number 1, though as yet we know nothing about the possible

values of those numbers.

We also don’t know the result of operating either a or a* on the states
In). However, we can get further by investigating the properties of the

results of such operations. Consider first a|n); what happens if we

operate upon it by the Hamiltonian operator? We shall have;
Ha|n)=(a'a+%)hwa|n)=(a‘aa++a)ho|n)

Using the only other information we have — the commutation relation —
we can write;

a‘taa= (aa+ —1)a —aa‘a-a

So, we get;
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Ha|n)=(aa'a—a+a)ho|n)=(aa'a—4a)heo|n)
=a(a'a—%)ho|n)=a(H -ho)|n)

where, in the last step, we have again used our knowledge of the
Hamiltonian. Hence;

Ha|n)=aH |n)—anw|n) = aE, |n)-ahw|n)
= E,a|n)-hwa|n)=(E, —hw)a|n).
Interpreting the result, we now know that:

a|n) is an eigenfunction of the Hamiltonian H with energy
eigenvalue (En - ha))

It proves interesting to apply the result to the ground state — since there
has to be one — which we can label as |0> ;

Ha|0) = (E, - 7w)al0).

But if we assume the result of the operation a|0) is non-zero, the above

result does make sense — it implies that there would have to be an
eigenstate of H with energy E,—7®, obviously less than Eo. This
would be logically inconsistent — we said that the state with lowest
energy is ‘0> . Since the result of assuming that a‘ 0> is non-zero proves

to be nonsense, the premise must be wrong. Therefore we must
conclude that;

al0)=0.
Class Exercise

Use the above result, together with the highlighted equation on p. 16,
to determine the ground state energy of the simple harmonic oscillator.
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From the Schrodinger equation we have;
H[0)=(a"a+1)nw|0)=a" (hw)a|0)+4hw|0)
=0+1nw|0)=1nw|0)

But, since obviously H ‘0> =E, ‘O> , we can conclude that:

The energy E, of the ground state is 17

Class exercise

Applying similar methods to those used for a\ n) , prove that:

Ha'|n)=(E, +hw)a’

n).

a*|n) is an eigenfunction of the Hamiltonian H with energy
eigenvalue (En +ha))

Now suppose we apply the last result to the ground state;
Ha"|0) = (E, +hw)a’|0).

This means there is a state, obtained by the operation a*|0), with
energy E,+hw=3ho. Indeed if we apply a* to that state, we shall find
another state of energy 37w. Itis easy to see that if we keep going we

shall discover a whole series of states with energies of the general form;

E,=(n+%)he

In fact, just by playing around with the operators, we have obtained the
energies of the entire set of states for the simple harmonic oscillator
without even needing the wavefunctions. Also, we now know that

H[n)=E, |n) = (a'a+1)hw[n) =(n+1)holn) -.a"a|n)=n|n)

The product operator a*a is sometimes known as the number operator.
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It now remains to find out what we actually get from the operations
a| n> and a" | n> . Consider the first; we now know that the result is an

eigenstate of the Hamiltonian with an energy E —7%w that is in fact

equal to that of the state with quantum number n — 1. We can therefore
conclude that the result a|n) is a state that must be identifiable with

| n —1> , at least to within a (possibly complex) proportionality factor c;
aln)=c|n-1). For this reason a is known as the lowering operator.

To find ¢, we use the result of Hermitian conjugation.

HERMITIAN CONJUGATION

Putting the sides together to complete the Dirac brackets, we then have;

(n

a‘a

n)=(n-1|c’c|n-1)
~(n|n|n) = <n—1Hc\2\n ~1)=n(n|n)= \c\z (n-1n-1) ..n= \c\z

We can in fact choose ¢ to be real, and hence with ¢ = Jn we have;

a|ny=+/n|n-1).
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PROBLEMS ON THE SIMPLE HARMONIC OSCILLATOR

1. Using similar methods to those used in dealing with the
lowering operator, determine the value of d in the equation

a+

ny=d|n+1)

2. Determine the results of each of the following operations of
raising and lowering operators, a* and a respectively, on

n);

simple harmonic oscillator states
ataln) aa'|n) a'a‘aaln)  (n|aaa|n)

3. The intensity of each line in an infra-red spectrum is governed
by a transition dipole moment, which for a stretching
vibration can be expressed as q(nz [x|n1). Here n1 and n2 are
the vibrational quantum numbers before and after infra-red
absorption, g is the difference in charge at each end of the
bond, and x measures the displacement from the equilibrium
bond length.

Adopting the simple harmonic oscillator model for the
vibrations, x can be expressed in terms of raising and lowering
operators, a and a* respectively, as x=i(%/ Zya))% (a— a+) where
uis the reduced mass and o the frequency of vibration. Using

this relation, and the properties of a and a*, show how the
usual infra-red selection rules, An = n2 - n1 = +1, arise.

D. L. Andrews
October 2009
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ANGULAR MOMENTUM IN QUANTUM MECHANICS

A particle moving with linear momentum p (Cartesian components px,
py, p=) at a distance r (x, y, z) from a given origin has an angular
momentum about that point given by a vector cross-product expression;

i j K [
I=rxp=(x y z =|Xf+|yj+|Z|2
Pk By B p
r

Hence |, =yp, —zp,; |, =2zp,—xp,; 1, =xp, —yp,

This classical expression converts to quantum mechanical operator form
through the usual transformation; px is replaced by the operator —i%/ox
for example. Thus we find;

fxz—ih yi—zi; fyz—ih(zi—xij; fzz—ih xi—yi
oz oy ox oz oy ~ oX

Class exercise

~

Given the commutation result [lx : |y] =inl,, prove that [l 2, |Z] =0.

Hint: Use cyclic permutations of the commutator, and the fact that
12=12+17+17.

The physical consequence of latter result is that both the z X
total angular momentum (squared) and its z-component % g
can be simultaneously specified. This is why we can y
designate hydrogenic orbitals with both | and m quantum

numbers, for example. It also proves very important in the
interpretation of molecular rotation spectra — indeed there are
temperature measuring devices based on the latter effect. But it is also
noticeable that we cannot simultaneously specify two different angular
momentum components — I» and Iy for example — because the quantum
operators do not commute
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COURSEWORK PROBLEMS DUE MONDAY, WEEK 7

1. Explain what is meant by a stationary state. [20%]

2. Evaluate the following commutators:

- a}
X4, —

L X [15%]
-,

e—IXa_Z’ eIX +|—X:|

I [20%]

3. Determine the results of each of the following operations of
raising and lowering operators, a* and a respectively, on simple

harmonic oscillator states \n};
, aaa‘a’|n) [15%)]

Using and developing these results as appropriate, evaluate

2
<n\(a—a+) n). [20%]
3
Explain also why <n\(a— a+) In) must be zero. [10%]
D. L. Andrews

October 2009



