
2H43 THEORETICAL CHEMISTRY 
Calculation of Atomic (and Molecular) Properties 

THE VARIATIONAL PRINCIPLE 
Our aim is to solve the time-independent Schrödinger equation. 

 H EΨ = Ψ  (4.1) 

Only in a very few cases can we solve this equation exactly. We would like to be able to 
calculate approximate solutions to equation (4.1) and be able to have some feel for how 
reliable they are. We thus try to produce a wavefunction such that 

 Φ Ψ�  (4.2) 

So, how do we determine Φ  how accurate is it and how may we compare different 
approximate Φ ? 

To address this question we start rather more generally. We consider a general eigenvalue 
problem corresponding to equation (4.1). 

 ˆ
n n nAf a f=  (4.3) 

Here Â  is both Hermitian and linear, as our Hamiltonian would normally be. (Hermitian: 

1 2 2 1
ˆ ˆf A f f A f ∗= . Linear: ( )1 1 2 2 1 1 2 2

ˆ ˆ ˆA c f c f c Af c Af+ = + ). Given that Â  is Hermitian all 
the eigenvalues an are real.  
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Thus ( ) 0n m m na a f f∗− =

"

 and an is real for n = m. 

We shall assume that there is a smallest eigenvalue and sort them into value order 

  (4.4) 0 1 2 1 1n n na a a a a a− +≤ ≤ ≤ ≤ ≤ ≤ ≤"

We also need to assume (and are able to without losing generality) that the eigenvalues in 
equation (4.3) are orthonormal. In other words 

 ,m m n mf f δ=  (4.5) 

The expectation values of experimental observables for a given system in a given state are 
calculated as the matrix elements of (normalised) eigenfunctions. This is a fundamental 
principle of quantum theory. If we know our system is in state fn then the expectation value 
for some operator  is given as Ô

 
ˆ

n n

n n

f O f
f f

 (4.6) 

A special case is the trivial case that Ô Â=  and that n = 0.Then equation (4.6) takes the form 

Variation.Ayntk.doc Page 1 of 5 



 0 0 0 0 0 0 0 0
0

0 0 0 0 0 0

ˆ ˆ
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f O f f A f f a f a f f
a

f f f f f f f f
= = = =  (4.7) 

We now ask ourselves what happens to the above expectation value when we replace f0 with 
and approximate function 

 0f φ�  (4.8) 

The idea is that φ may be chosen freely. It may be chosen so that the integrals entering 

 
Âφ φ

φ φ
 (4.9) 

can be evaluated. Further it is to be stressed that by evaluating (4.9) we need know nothing 
about the exact function. There now arises the question: if two different approximate 
functions have been suggested, how may we differentiate between them. Can one be judged 
better than the other? (What, in this case does “better” really mean?) To answer this question 
partly we use the completeness of the set of eigenfunctions and expand our test function of 
equation (4.8) as 

 n n
n

c fφ =∑  (4.10) 

Fortunately we only need to know that this expansion is in principle possible, not its precise 
form. We then insert this into equation (4.9) and use the fact that the operator Â  is a linear 
operator. 
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Let us take a one-dimensional case with a single particle in a potential well. 

The profile of the well is shown above and is given by 

-V0 

+l-l 

 ( ) 0 for 
0 for 
V x l

V x
x l

⎧− ≤⎪= ⎨ >⎪⎩
 (4.12) 

The Schrödinger equation for this particle is given by 

 ( ) ( ) ( )
2 2

2

d
2 d

V x x E x
m x

⎡ ⎤
− + Ψ = Ψ⎢ ⎥
⎣ ⎦

=  (4.13) 

The Hamiltonian is obviously 

 ( )
2 2

2

dˆ
2 d

H
m x

= − +
= V x  (4.14) 

The ground state is the state of the lowest energy. We propose the approximate function  

 ( )2exp xφ α= − . (4.15) 

The “best” α will most likely lie somewhere in between. It can, however, be determined by 
variation. Thus the quantity 

 
Ĥφ φ
φ φ

 (4.16) 

becomes a function of α. 

 ( )Ĥ
E

φ φ
α

φ φ
≡ �  (4.17) 

This energy is always greater than (or at best equal to) the ground state energy. We then 
determine α by requiring 

 ( ) 0E α
α
∂

=
∂

�  (4.18) 

The function given by our test function with the appropriate value of α inserted is then taken 
to be the “best” wavefunction for this particular family. 
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Variation (General) 
In the general case 

 0 0
ˆ

0Af a f=  (4.19) 

The eigenfunction 0f  depends on the coordinates of the problem. In the case above on the x-
coordinate. In any other case there will be more coordinates so that we might write our test 
function 

 ( )1 2, , , ;
pNp p p xφ φ= G…  (4.20) 

As above we write 

 ( 1 2

ˆ
, , ,

pN

A
a p p p

φ φ
φ φ

≡ � … )  (4.21) 

 As a result each of the new coordinates have to be determined 

 
( ) ( ) ( )1 2 1 2 1 2
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, , , , , , , , ,
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a p p p a p p p a p p p
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∂ ∂ ∂
= = =

∂ ∂ ∂

… … …
" pN

=  (4.22) 

We may introduce more and more parameters in order to get a more and more exact solution. 
The problem arises because these equations rapidly become too unwieldy to be solvable. 

The Hydrogen atom again 
The Hamiltonian for the single electron of the hydrogen atom is (as we have seen before) 

 
2 2

2

0

1ˆ
2 4

eH
m rπε

= − ∇ −
=  (4.23) 

where we have assumed that the nucleus is placed at the origin. 

In order to avoid carrying the “baggage” of fundamental constants around we shall work here 
in atomic units. For this we set 

 04m e πε 1= = = ==  (4.24) 

Lengths are then given in Bohr (=0.5292 Å) and energies in Hartrees (1 Hartree = 27.21 eV). 
With these the Hamiltonian becomes 

 21ˆ
2

H
r
1

= − ∇ −  (4.25) 

The eigenvalue problem 

 ˆ
n nH e nψ ψ=  (4.26) 

has as its lowest eigenvalue 

 0
1
2

e = −  (4.27) 
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and the corresponding eigenfunction is 

 0
1 reψ
π

−=  (4.28) 

(this function is normalized) as can be found in most introductory textbooks on quantum 
theory. 

Since we in this case know the exact solution we can directly compare it with results of 
calculations using the variational method. This is in almost all other cases impossible. 

We will apply the variational method for the test function 

 
2

3 42 re ααφ
π

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.29) 

i.e. a Gaussian (that furthermore is normalized). In the overhead we compare the exact 
wavefunction with that of (4.29) for different values of α. 

Since φ of equation (4.29) is normalised the expectation value of  equation (4.21) becomes 

 ( )
1
23 22

2
E α αα

π
⎛ ⎞= − ⎜ ⎟
⎝ ⎠

�  (4.30) 

Taking the derivative of this with respect to α gives the value of α at the minimum 

 8 0.283
9

α
π

= �  (4.31) 

and the expectation value of this value of α is 

 8 4 0.424
9 3

E α
π π

⎛ ⎞= = − −⎜ ⎟
⎝ ⎠
� �  (4.32) 

By looking at our plots we can see that this is reasonable (but no more) description of the 
exact wavefunction although the agreement between the exact lowest energy and the 
approximate one may suggest a better agreement. 

We may directly measure the quality of the approximate wavefunction in the present example 
by evaluating 

 ( )O α φ ψ φ ψ= − −  (4.33) 

This function is a minimum when the difference between the exact and the approximate 
function is smallest. O(α) has a minimum at 

 0.27α �  (4.34) 

i.e. for a value close to that of equation (4.31). 

 

Variation.Ayntk.doc Page 5 of 5 


	Calculation of Atomic (and Molecular) Properties
	The Variational Principle
	Variation (General)

	The Hydrogen atom again


