
For a particle of mass m and velocity v be located at a position r measured from some origin. 
Then according to classical mechanics, the particle has a linear momentum p given by 

 m=p v   

and an angular momentum  given by A

 = ×r pA   

We transcribe this to a quantum representation by replacing p with ( )i= ∇  where  
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In Equation (1.3) (and elsewhere) a superscript caret denotes a unit vector. For convenience, 
we drop the burden of carrying around  by introducing a system of units in which = 1== . 
Thus the Cartesian components of p are 
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The commutator [ ], = −A B AB BA  of two operators A and B plays a central role in quantum 
mechanics; the necessary condition for the observables A and B to be simultaneously 
measurable is that the corresponding operators A and B commute, that is, [ . From 
equation (1.4) it is easily seen that the position vector of a particle and its momentum satisfy 
the basic commutation relations: 

], =A B 0

 [ ] [ ], , , 0, ,x yx p i x p x p⎡ ⎤= =⎣ ⎦ 0z =

with all cyclic permutations. Thus, for example it is not possible to measure simultaneously 
along the same direction the position and linear momentum of a particle to arbitrary 
precision. 

The commutation relations of the Cartesian components of  are also readily derived: A

 [ ], , , , ,x y z y z x z xl l il l l il l l il⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ y=

Equation (1.7) has the interpretation that quantum states cannot be specified by any more 
than one of the labels (eigenvalues) of the three components of angular momentum. The 



“good” quantum numbers corresponding to the largest set of mutually commuting operators 
represent the maximum information that can be known about a quantum mechanical system. 
The measurement of another variable  corresponding to an operator not commuting with this 
set necessarily introduces uncertainty into one of the variables already measured. A sharper 
specification of the system is, therefore, not possible. 

Because of the importance of the commutator, it is natural to define a general angular 
momentum operator j as one whose Cartesian components obey the commutation rules 

 [ ], , , , ,x y z y z x z x yj j ij j j ij j j ij⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ =

2

 (1.8) 

in analogy to equation (1.7). This extended definition returns an unexpected dividend. As we 
shall dee in the next section, it permits the existence of spin—a quantity that has no classical 
analogy. We will reserve for orbital angular moment and use j for general angular 
momentum. 

A

Eigenvalues and matrix elements of angular momentum operators 
The square of the total angular momentum is defined as 

 2 2 2
x y zj j j= + +j  (1.9) 

This operator has the commutation properties that 

 2 2 2, , ,x y zj j j⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 0= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦j j j =  (1.10) 

Hence we may construct states jm  that are simultaneously eigenfunctions of j2 and any one 
component of j, say jz; that is 
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 (1.11) 

We proceed to determine the eigenvalues 2
j jm jmλ = j  and zm jm j jm= . 

The operator 2 2 2 2
x yj j j+ = −j z  is diagonal in the jm  representation. Moreover it has positive 

definite (nonnegative) eigenvalues. 
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 (1.12) 

because the expectation value of the square of a Hermitian operator, that is, the square of a 
real eigenvalue, is greater than or equal to zero. Hence we conclude that the value of m is 
bounded from both above and below in that m2 cannot exceed λj. This implies that for a given 
j there exist minimum and maximum values of m, denoted by mmin and mmax, respectively. 

Now we introduce the raising and lowering operators j±  defined by 

 x yj j ij j j ij+ −= + = −x y  (1.13) 
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From equations (1.8) and (1.10) it may be shown that these operators satisfy the commutation 
rules: 
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The commutation algebra is useful here: 

  (1.15) [
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Let us examine the behaviour of the function j jm± . We find 

 2 2
ij jm j jm j jmλ± ± ±= =j j  (1.16) 

and 
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Thus j jm±  is an eigenfunction of j2 with the eigenvalue λj and an eigenfunction of jz with 
the eigenvalue . It follows that 1m ± j jm±  is proportional to the normalised eigenfunction 

1j m ± . That is 

 1j jm C j m± ±= ±  (1.18) 

where is a proportionality constant. The ability of the raising and lowering operators C± j±  to 
alter m by  unit while preserving λ1± j gives them their names. The may also be referred to as 
step-up and step-down, ladder and shift operators. 

Since the values of m are bounded between mmin and mmax, it follows that  

  

 max 0j j m+ =  (1.19) 

and 

 min 0j j m− =  (1.20) 

We now apply  to equation (1.19) and j− j+  to equation (1.20) and by using the identity 

 ( )2 1z zj j j j± = − ±j∓  (1.21) 

we obtain the simultaneous equations 
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Eliminating jλ  yields 

 ( ) ( )max max min min1m m m m 1+ = −  (1.23) 

or 

 ( )( )max min max min 1 0m m m m+ − + =  (1.24) 

One of these two factors must vanish. We know, however, that  so the only 
solution to equation (1.23) is  

max minm m≥

 max minm m= −  (1.25) 

Successive values of m differ by unity (shown in equation (1.17)). Therefore,  is a 
positive definite integer which we may denote with 2j, where j is an integer or half integer. 
Then from  and 

max minm m−

max min 2m m− = j max min 0m m+ =  we conclude that  

 max min,m j m j= = −  (1.26) 

and there are 2j+1 possible values of m, , 1, 2, , 1,m j j j j j= − − − + −…  for each value of j. 
Substitution of equation (1.26) into equation (1.22) yields the additional result 

 ( )1j j jλ = +  (1.27) 

We are also in a position to evaluate the proportionality constant C±  appearing in equation 
(1.18). We find 

 ( )
( ) ( )

2 2 1

1 1
z zC jm j j jm jm j j j
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 (1.28) 

From this we can see that the absolute value of C±  is determined but the phase is arbitrary (it 
could be positive or negative). We choose C±  to be real, that is  

 ( ) ( )
1
21C j j m m± 1= ⎡ + − ± ⎤⎣ ⎦  (1.29) 

This agrees with the standard phase convention namely that the matrix elements of xj  are real 
while those of yj  are purely imaginary. 

We have here a treatment in which no explicit function had been used. Our starting 
assumption that the system was not classical is sufficient to bring in quantisation and to set 
limits on the values which the quantum numbers may take. 
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