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1 Bayesian inference

1.1 Bayes theorem

We begin by refreshing our memories on the subject of conditional probability. We define
the probability of A given B has occurred, written P[A|B] as
P[ANB]

P[B]
While conditional probabilities can have interesting philosophical implications they also al-
low one to do calculations. Thus

P[A|B] =

P[A] = P[A|B]P[B] + P[A|B‘|P[B*]
or more generally if U, B; = Q then
n
P[A] = ) PIAIB;]P[B;]
i=1

We also have Bayes Theorem

P[A|B]P[B]
P[B|A] = ———
P[A]
this implies that
P[B|A] o< P[A|B]P|B] 1)

A slight generalization of the Bayes theorem is by considering the events U}, B; = Q,
P(A|B;)P(B;)

P(BilA) = — :
vk P(AIB)P(B))

i=1,..., k.

Example 1.1. In a population with high risk to be affected from HIV we try an new diagnostic
method. The 10% percent of the population is believed to be affected by HIV. From the results
of the test, the test is positive for 90% of the people that they are really affected by HIV and
negative for 85% of the people that the are not affected by HIV. Which are the probabilities to
obtain false negative and false positive results?

Suppose that A is the event of someone to be affected by HIV and B the event that the test
is positive. Then P(A) = 0.1, P(B|A) = 0.9 and P(B€| A°) = 0.85.

P(B|A°)P(AC
P(the test is false positive) = P(A°|B) = P(BIATP(AT) _

P(B)

(1—-P(B°|A9))P(AY) B (1-0.85) x0.90 —06

P(B|AS)P(A) + P(B|A)P(A)  0.15x0.90+0.90x0.10
Accordingly,
. . P(B°|A)P(A)
P(the test is fal tive) = P(A|B) = ————— =

(the test is false negative) (A|B%) PBY)

1-P(BJA)P(A 1-0.9) x0.10

( (B|A))P(A) ( ) X — 0.0129

P(BC|AC)P(A°) + P(B¢|A)P(A) - 0.85%x0.90+0.10 x0.10
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1.1.1 The Continuous Analogue

In the continuous case we usually consider distributions with a joint density. In the two
variable case with a density f(x, y) so

P[(X,Y)eC] :ff(x,y)dxdy
C

Here we define the marginals as

fx(x):ff(x,y)dyandfy(y)sz(x,y)dx

The conditional distributions are

Fectp = LD and pyim = L8P

H) Jx(x)

fxy) _ fEnNHW
fx(x) fx(x)

Thus

flx) =
or f(ylx) is proportional to f(x|y) fy(y)
F1x) oc fxIy) fy ()

1.2 Subjective Inference

Despite the careful derivations of frequentist inference many people would argue that one
always starts an experiment with a prior belief and this is then modified by experience. This
subjective view is generally known as Bayesian and can be developed to give an alternative
approach to inference.

Example 1.2. Consider three statistical experiments:

1. A music expert claims to be able to distinguish a page of Haydn score from a page of
Mozart score. In all 3 trials, she distinguished correctly.

2. A lady, who adds milk to her tea, claims to be able to tell whether the tea or the milk
was poured into the cup first. In all 3 trials, she correctly determined which was poured

first.

3. Adrunkard claims to be able to predict the outcome of a flip of a fair coin. In all 3 trials,
he guessed the outcomes correctly.

Our interest is the the probability of the person answering correctly. The distribution for
this case is binomial B(3, p). The maximum likelihood estimator is p = % = % = 1. Is thisa
satisfactory analysis for all the three experiments?

No reasons to doubt the conclusion for Experiment 1 but we have serious doubt for Exper-
iment 3.
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Suppose we have some parameter of interest 8. Unlike classical inference we have some
subjective, or prior belief about this parameter. To quantify this belief we construct a proba-
bility distribution f(6) which we call the prior distribution.

We perform some experiment with the aim of gaining more information about 8 and
suppose the result of our experiment is some data

(x1’x2)x3)---’xn)T =X
This has a likelihood of the form
f(x10)

Note we use the above notation since we perform the experiment given our prior belief about
0.

We now use Bayes theorem to modify our belief, that is to derive a new distribution for
0. If 6 is continuous

f(x10)f©)

O|x) = ,

JOW =10, f a0
and if 0 is discrete, FE0) O
(x10) f(0)

O|x) = }

TO = 56,76,

Since in the denominator we integrate or sum with respect to 6 the denominator is a func-
tion of x. Therefore for given data x, the denominator is constant, the so-called constant of
proportionality. Accordingly an alternative way of presenting the Bayes theorem is

fOlx) o f(x16)f(6)

where f(0]x) is the posterior distribution, that is the distribution of 8 after our view has been
modified by experiment. This is just an analog of Bayes theorem as discussed above.

plA|B] = p[B|Alp[Al/plB]
The basic idea:
1. Treat @ as arandom variable.
2. The prior f(0) reflects the beliefs on the true value of 0 before taking any observations.

3. The goal of Bayesian inference is to update the beliefs from prior f(8) to posterior
f(@]x), after taking observations from a random sample (x;, X2, X3, ..., XN) T—y.

Example 1.3. A coin is tossed 70 times, the number of heads is 34. The probability of being
a head is some unknown value 0. We have some prior belief about 0, i.e., E(0) = 0.4 and
Var(0) = 0.02 which we need to quantify. One way of doing this is to use a probability dis-
tribution to quantify our belief. This distribution f(0) is the prior distribution is assumed to
contain our prior beliefs about the parameter 0. A possible distribution for 0 is the Beta distri-
bution with density

_ Ga_l(]. _ e)b—l

f = Betaab) for0<=0<1. (2)

3
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Since the mean and variance of the Beta distribution for the prior distribution are known i.e.,

T —04  Vvar® = ab -
+b C(a+b2a+b+1)

E@©) = 0.02.
a

We can easily derive the parameters of the Beta distribution a, b by solving the above system of
equations. So the resulted parameters are,

— 2 _ 2

where m = E(0) and u = Var(0). For our example the parameters are a = 4.4 and b = 6.6.
When we conduct the experiment of tossing coin n times we have the probability, (likelihood
when x the number of heads is known)

n\hxq _pyn-x
f(x|9)—(x)9 (1-0)

Using Bayes theorem we have

F01) (;1)9’%1 —O)" £ (0)

so if we had chosen
Qa—l (1 _ B)b_l
O =—— "7
16 Beta(a, b)
we would have
f6lx) x 84" _g)N=-x+b-1)

We know that f(0|x) is a distribution function and since that
O|x ~Betala+x,b+n—x).

The constant of proportionality is obtained easily since we know that the distribution must
integrate to 1. This latter function is the posterior distribution of the parameter 0 given the
data - it is our belief given the data.

So if we start with a prior which is
0 ~ Beta(4.4,6.6)
and we toss a coin 70 times and observe 34 heads then
O|x ~ Beta(38.4,42.6).

We will study now how the data change our prior beliefs by comparing the expected values for
the prior and posterior distributions:

+X

a
E(Q)—m E(9|X)—m
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In our example they are:
E@)=04  E0|x)=0.474.

So after taking observations from a random sample the prior estimate increases from 0.4 to
0.474. Note that using the standard maximum likelihood estimation the MLE based on the
data is - = 0.486. Summing up the posterior is a combination of the data and the prior belief.

Example 1.4. Drinks dispensed by a vending machine may overflow. Suppose the prior distri-
bution of p the proportion that overflow is

p |005]010]0.15
f(») [ 030050 0.20

If two of the next nine drinks dispensed overflow find the posterior distribution of p .
Assuming independence the likelihood given the experiment is

9
fxlp) = (2)p2(1 -p)’

Thus the posterior is
(2)p*-p)" x f(p)

flplx) =
3 QPR -ppTx f(p)

This gives

£(0.05|x)  0.05%(0.95)7 x 0.3
£(0.10]x) o 0.10%(0.90)” x 0.5
£(0.05]x) o 0.15%(0.85)7 x 0.2

or pulling all the results together

p 0.05] 0.10 | 0.15
f(p) 030|050 0.20
f(plx) | 0.12 ] 0.55 | 0.33

1.3 Choice of prior

The Prior Distributions are the most critical and most criticized point of Bayesian analysis:
e The prior distribution is the key to Bayesian inference.

* In practice, it seldom occurs that the available prior information is precise enough to
lead to an exact determination of the prior distribution.

e There is no such thing as the prior distribution.

* The prior is a tool summarizing available information as well as uncertainty related
with this information.

¢ Ungrounded prior distributions produce unjustified posterior inference.
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1.4 Conjugate class

The other difficulty is the integration required to obtain the posterior density, i.e., the cal-
culation of the constant of the proportionality. We can overcome this to some extent by
choosing a prior in sufficiently clever way. It is not very restrictive to choose a prior from a
conjugate class. Conjugate priors are specific parametric families with analytical properties.

Definition 1.1. A family & of probability distributions on 0 is conjugate for a likelihood func-
tion f(x|0) if, for every f € &, the posterior distribution f(0|x) also belongs to & .

Switching from prior to posterior distribution is reduced to an updating of the corre-
sponding parameters, see Example 1.3 where the Beta distribution for binomial likelihood
as you can see is a conjugate prior. The justification of the use of conjugate priors is mainly
their tractability and simplicity along with the preservation of the structure of f(0]x).

The following table represent the most usual conjugate priors.

f(x10) () f©Olx)
X~ B(n,0) Beta(a,b) Beta(a+x,b+n—x)
X1y..., X ~ P(O) Gamma(a,1/b) Gamma(a+Y x;,1/(b+ n))

X1,...,Xn ~Gamma(k,1/0) Gammal(a,1/b) Gamma(a+nk,1/(b+Y x;))

k is known
X1,..., X, ~ Geom(0) Beta(a,b) Beta(a+n,b+) x;—n)
x ~ NB(r,0) Beta(a, b) Betala+r,b+x—r)
X1,..., Xn ~ N(6,1/7) N(b,1/c) Nz L)
Tisknown

Table 1: List of conjugate priors.

Example 1.5. Suppose a random sample x ~ Gammal(k,1/0), where k is known and 6 ~
Gammal(a,1/b). Show that

0|x ~Gamma(a+nk,1/(b+)_x;)).
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The likelihood is,
fxl0) = x; exp(—0x;)
i1 T ™ ‘

n xlf_l
1

— H T ok exp(—0x;)
i=1

n
o []0%exp(-0x;)
i=1

= 0" exp(-0) x)
So
fOlx) o« f(O) x f(x]60)

x 0% lexp(—bb) x B”kexp(—Hin)

x 04" lexp {-(b+)_ x)6}

Therefore
0|x ~Gamma(a+nk,1/(b+)_ x;)).

Example 1.6. Suppose a random sample x ~ P(0) of size n and 0 ~ Gamma(a,1/b). Show

that
01x ~Gamma(a+)_ x;,1/(b+n)).
The likelihood is,
" exp(—0)0%
fx16) = Hp—‘
i=1 Xit
n
o []exp(-6)6*
i=1
= exp(—n@)or*i
So
fOlx) o< f(O) x f(x]6)
x 0% 'exp(—bO) x exp(—nh)x*i
x 0% lexp{—(b+n)d}
Therefore

01x ~Gamma(a+)_ x;,1/(b+n)).
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1.4.1 Existence of conjugate priors

Under the assumption that the conjugate priors do not contradict with our prior beliefs and
given that a such family of distribution exists the computations could be simplified. Al-
though in which cases a family of conjugate priors can be obtained?

The only case that the conjugate priors can be derived easily is for models of the expo-
nential family of distributions.

Definition 1.2. The family of distributions:
f(x10) = h(x)g(0) exp(t(x)c(9))

is called an exponential family for the functions h, g, t, c such as
ff(xl@)dx = g(@)fh(x) exp(#(x)c(®))dx = 1.

The exponential family includes the exponential, the Poisson, the Gamma with one param-
eter, the binomial and the normal distribution with known variance.

Suppose the prior distribution f(0), then:

f@Olx) o f(0)x f(x6)

= f(O)x H h(x;)g©) exp(t(x;)c(®))

i=1

= fO) x([]hx))g® " exp(d_ t(x:)c(®))
i=1

x  f(0)g©6) " exp(d_ t(x:)c(®))

So if we choose
f0) x g0 exp(bc(d)) 3)

then the following posterior distribution will be obtained:

fOlx) < g@" exp(} t(x;)+b)c(®)

= g0 exp(bc)),

which belongs to the same family of distributions with the prior distribution with adjusted
parameters. All the examples of conjugate priors that we have seen were obtained in this
way.
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Example 1.7. Consider the binomial distribution. The probability mass function is given by,

fx10) = o*(1-0)"""
n 0 X
= )0

= ["|a-6exp (log((%)x))

= (1—9)”eXp(x108(%))-

For Definition 1.2,

-
X

go) = (1-9)"

tx) = x

0(6) = lOg(m)

Therefore we can construct a conjugate prior, see Eq. 3 of the form,

O o g®exp(bc®))

(- 9)")d exp(blog(lg;g))

which is member of Beta distributions.

1.5 Noninformative priors

What if all we know is that we know “nothing”? In the absence of prior information, prior
distributions solely derived from the sample distribution f(x|0).

Noninformative priors cannot be expected to represent exactly total ignorance about
the problem at hand, but should rather be taken as reference or default priors, upon which
everyone could fall back when the prior information is missing.
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1.5.1 The Jeffreys’ prior

One perspective on defining the noninformative prior distribution is the invariance to ‘1-1’
transformations of the parameters. This leads to the Jeffreys’ prior which is based on Fisher
information
dzlogf(xlﬁ)) B E{(dlogf(xle))z}
d6? - do '

Definition 1.3. The prior distribution of Jeffreys is defined as

10) =—E(

fo0) x 11(6)|2.

Proposition 1.1. The prior distribution of Jeffreys is invariant under transformations of the
parameters i.e., if ¢ = g(0) then

0
f0(9):f0(¢)|£|-

Example 1.8. Suppose that (x1, X2, X3,...,Xn) T'= x~N(,02), wherea? is known. Then

Zr'lzl(xl' _9)2
f(x16) o exp(—lT
and ; oy
Z'zl(xi_ )
logf(xIH) X —IT.
Furthermore:
d?log f(x|0)
10) = _E(d—e)Z)
n
= E(;)
n
T 02

Therefore fy(0) x 1.

Example 1.9. Suppose that x|0 ~ B(n,0). Then
f(x|0) ox 6% (1-0)"""

and
log f(x]0) x xlogf + (n—x)log(1—-0).

10
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Furthermore:

d?log f (x|
10) —E(—Oj‘gz(x' )
—X n—x

_E(ﬁ_ (1—9)2)

_ no_n-nb because E(x)= n6
T 92 (1-02 -
= no'a-07.

Therefore f3(0) o< 07Y2(1-0)"Y? and thus

0 ~ Beta(1/2,1/2).

1.6 Predictive distribution

With a prior distribution f(0) the Bayes theorem leads to the posterior distribution f(0]x).
Suppose we consider taking a further observation y. We know the likelihood so f(y|0) is
known. The predictive distribution of y given x is

FOl0) = f F310) f©O1x)d6.

Example 1.10. 20 windows in a high rise office block broke in the first year of occupancy of
the building. The question was how many of these were due to a specific defect D. If they were
caused by D then the manufacturer of the windows will replace them, otherwise they will not.
Onlyin 4 of the 20 widows was glass available for analysis; to this end we will assume a sample
of 4in 20. So all in our sample of 4 were found to have broken because of D.

In the subsequent legal wrangle a glass expert claimed that the distribution of 0 the prob-
ability a window suffers from D is

~ 0—3/4(1 _ 9)—1/4

= <0<l ~ B 1/4,3/4).
1) B/43/0) 0<0<1 or 6 eta(1/4,3/4)

For a sample of 4 with 4 with defect D the likelihood is f(x|0) = (3)0*(1 - 0)*~* = 6* so the
posterior is
913/4(1 _ 9)—1/4

f@lx) = 0<0<1 or O~Beta(l7/4,3/4).
B(1/4+4,3/4+4-4)

This is a conjugate prior, see for the general case Table 3. The distribution of Y the number of
defectives is (given 0)

f(y|9) - (1;)93’(1 _ 9)16—3/

11
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The predictive distribution is then

flx) ff(yle)f(elx)de

(y)

fl 6y+13/4(1 _ 9)63/4_yd9
B(17/4,3/4) Jo

16\ B(y+13/4+1,63/4—y+1)
y B(17/4,3/4)

16\ B(y +17/4,67/4 - y)
y B(17/4,3/4)

12



