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1 Hypothesis Testing

Setting up and testing hypotheses is seen in most courses as an essential part of statistical

inference. We think that such testing my loom too large in undergraduate courses but it is

an important part of statistics and you need to be able to both understand and construct

statistical tests. We begin with some ideas and definitions.

1.0.1 Hypotheses

We often make assertions and as in many cases we have incomplete information, the as-

sertion is about a probability distribution. Such an assertion abut a distribution is called a

statistical hypothesis. It may be a simple hypothesis if it completely specifies the distribution

or complex if it is not simple.

1.0.2 Example

• H0 : f (x) = θexp(−θx) is a simple hypothesis if we add θ = 3.

• X is N(100,σ2), for an unspecified σ, is complex.

Typically the hypothesis has been put forward, either because it is believed to be true or

because it is to be used as a basis for argument.

1.0.3 Example

1. Suppose we have a coin which we wish to check is fair, that is P[Head]=1/2. If we

assume the coin is fair we are assuming that the number of heads, X , is Binomial with

p = 1/2.

2. We might be interested in the birth weight of babies born in Sheffield compared with

those born in Brighton. Since we know ( from the medics) that birth weights are Nor-

mal we can think of the hypothesis that the Sheffield and Brighton weights have Nor-

mal distributions with the same mean. This is not a simple hypothesis as the means

and variances are not specified.

In each problem we shall consider, the question of interest is simplified into two competing

hypotheses between which we have a choice;

• The null hypothesis, denoted H0

• The alternative hypothesis, denoted H1, which is the compliment ( in the context of

the problem) of the null.
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These two competing hypotheses are not however treated on an equal basis, special con-

sideration is given to the null hypothesis. Usually the experiment has been carried out in an

attempt to prove or disprove a particular hypothesis, the null hypothesis. For example,

H0: there is no difference in taste between coke and diet coke

against

H1: there is a difference

Of the two hypotheses the null is almost always simple in that it completely specifies the

underlying distribution, the alternative is often complex.

1.0.4 Example

1. H0 : X is Binomial (100,1/2) i.e. p is specified

H1 : X is Binomial (100,p) p ≤ 1/2

2. H0 : X is N(5, 20) i.e. µ and σ are specified

H1 : X is N(µ, 20) i.e. µ> 5

1.1 Type I and II errors

As we are dealing with incomplete information errors are inevitable. The power of statistics

lies in the fact that we accept these errors and in the way we deal with them.

If we have two competing hypotheses there are two kinds of errors that may arise and

the following table gives a summary of possible results .

Truth

action H0 H1

Accept H0 ok Type II error

Reject H0 Type I error ok

The two errors are traditionally called the type one and type two errors and we will be looking

at their probabilities

1. α= P [ Type I error] = P [reject H0|H0 true].

2. β=P [Type II error] = P [accept H0|H0 false]

2 A general approach

Suppose we choose an acceptable value for the probability of a type I error,

α= P [ Type I error] = P [reject H0|H0 true]
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such as 0.05 or 0.01. Then take the sample space of outcomes (x1, x2, . . . , xn) and split it into

two parts C and R where C ∩R is empty and C ∪R is the whole space.

We choose C - the critical region - to be the set of unlikely points, that is the set of out-

comes which are ( under H0) unlikely. Then if we observe a set of points in C we have two

options

• Either H0 is false

• Or we have observed an event of small probability.

In conventional testing we assume the second and say we reject the null hypothesis and

accept the alternative.

By this we mean that it is rational on the evidence to believe that the null is not true.

Recall

• The probability of observing the unlikely event is α the probability of a type I error-

often referred to as the size of the test.

• As we have seen the probability of a type II error β= P [accept H0|H1] is generally un-

known and needs to be calculated. The alternative measure is the power P [reject H0|H1]

but this also has to be computed.

If we do not reject the null hypothesis, it may still be false (a type II error) as the sample may

not be big enough to identify the falseness of the null hypothesis (especially if the truth is

very close to hypothesis). You should bear in mind that for any given set of data, the type I

and type II errors are inversely related; so the smaller the risk of one, the higher the risk of

the other.

As dealing with high dimensional spaces is difficult we usually base our tests on a test

statistic T computed from the observations. As above we find a critical region C defined by

P [T ∈C |H0] =α

Thus the region C is those values of T which are unlikely when H0 is true. Some workers

prefer the p-value. The probability value (p-value) of a statistical hypothesis test is the prob-

ability of getting a value of the test statistic as extreme as or more extreme than that observed

by chance alone on the assumption that the null hypothesis H0, is true. We think this is the

wrong approach but being lazy will use it from time to time.

2.1 Power

The power of a statistical hypothesis test measures the test’s ability to reject the null hypoth-

esis when it is actually false - that is, to make a correct decision. In other words, the power of
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a hypothesis test is the probability of not committing a type II error that is γ= 1−β. Usually

statisticians think of the power as a function of the parameter, So if we have

H0 : θ = θ0 against H1 : θ = θ1

they would consider the power as being γ(θ1) a function of possible alternatives.

2.2 Summary of the definitions

• A statistical hypothesis is an assertion about a probability distribution.

• A simple hypothesis completely specifies the distribution.

• α= P [ Type I error] = P [reject H0|H0 true].

• β=P [ Type II error] = P [accept H0|H0 false].

• The critical region C is those values of T which are unlikely when H0 is true.

• The probability value (p-value) of a statistical hypothesis test is the probability of get-

ting a value of the test statistic as extreme as or more extreme than that observed by

chance alone on the assumption that the null hypothesis H0, is true.

• The power of a statistical hypothesis test is the probability of rejecting the null hy-

pothesis when it is false.

3 Constructing tests

While the apparatus above is reasonable it does not answer the questions as to how one

might find a suitable statistic T and how we can be assured that T encapsulates the whole

problem. Most statistics book give a list of recipes. The procedure is typically:

1. Set up H0 and H1

2. Pick a suitable test statistic T whose distribution is known under the assumptions of

H0.

3. Choose the size of the test α= P [reject H0|H0 true]

4. Find the critical region using the distribution in 2

5. Compute T.

6. If T lies in the critical region reject H0.

Often we can derive such a method from insight into the problem, as we shall see.
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3.1 A Binomial example

We toss a coin 12 times and observe

HH TH TT TH HT HH

We assume that X the number of heads in Binomial B(12,p) and our null hypothesis is

H0 : P [ Head ] = p =
1

2

while the alternative is

H1 : P [ Head ] = p >
1

2

1. One choice of statistic is just X the number of heads.

2. We choose α to be approximately 0.05.

3. To find a critical region C note

α= P [X > c |H0 : p = 1/2]

From tables of the Binomial we have

c P[ X > c]

0 0.99976

1 0.99683

2 0.98071

3 0.92700

4 0.80615

5 0.61279

6 0.38721

7 0.19385

8 0.07300

9 0.01929

10 0.0032

11 0.0002

12 0.0000

Now an α of 0.05 is not possible but we can have 0.0193. So we choose a critical region of the

form X > 9. In our sample we have X = 7 heads. Since this does not lie in the critical region

we accept H0 and conclude that p = 1
2

Notice that if we had a simple alternative, say H1 : p = 0.7 we could compute the type II

error since β= P [X ≤ c|p = 0.7].

You might like compute this this yourself.
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The power is just γ(p) = P [X > 9|p] which is

P γ(p)

0.5 0.01929

0.6 0.08344

0.7 0.25282

0.8 0.55835

0.9 0.88913
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Figure 1: The power as being γ(p) a function of possible alternatives with parameter p = 0.5

to 0.9 in 0.004 increments.

The critical region depends on the alternative - try finding the critical region for testing

H0 : p =
1

2
against the alternative H1 : p >

1

2

3.2 A two tailed test!

Suppose we wish to test

H0 : p =
1

2
against the alternative H1 : p 6=

1

2

then the critical region will consist of small values of X and large values of X. Hence we have

a region of the form X < c1 and X > c2. We split our α between the two segments so

P [X < c1|H0 : p = 1/2] = P [X > c2|H0 : p = 1/2]

Extending the table above gives
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c P[ X > c ] P[ X ≤ c ]

0 0.99976 0.00024

1 0.99683 0.00317

2 0.98071 0.01929

3 0.92700 0.07300

4 0.80615 0.19385

5 0.61279 0.38721

6 0.38721 0.61279

7 0.19385 0.80615

8 0.07300 0.92700

9 0.01929 0.98071

10 0.00317 0.99683

11 0.00024 0.99976

12 0.00000 1.00000

Now if we choose c2 = 9 as before with c1 = 3 then α= 2×0.019287 or about 0.0386.

Notice the critical region was in both tails of the distribution. Tests with regions of this

for are often called two tailed tests.

3.2.1 A Normal example

Suppose we have a sample of size 100 from a Normal distribution. We wish to test

H0 : µ= 68 against H1 : µ 6= 68

To simplify matters we assume that the standard deviation of the population is σ= 16.

A possible statistic is X̄ which is Normal N( µ,σ2/n). Rather simpler is the standardized

random variable

z =
X̄ −68

σ/
p

n

which we know is standard Normal when H0 is true .

Now if the true mean is not 68 then z will be very different from zero. The distribution of

z is shown in the Figure 2 (c) and we see that the two areas in the tails must total α. A little

inspection gives us the critical regions as

z <−z1−α/2 and z > z1−α/2

Now if we choose α= 0.05 then we will reject H0 when z <−1.96 or z > 1.96

In our case X̄ = 68.04. We know that σ= 16 so z = 0.025. This is not in the critical region

so we accept H0

This is somewhat unrealistic since if we are unsure of µ is is most unlikely that we know

σ!

Here we have a large sample and for for large samples ( exceeding 50) we can use an

estimate. Here σ̂= 13.724 so

T =
X̄ −68

σ/
p

n
= 0.029
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and in consequence we accept H0.

What is the critical region for the alternative H1 : µ> 68?

(a) z > z1−α (b) z <−z1−α (c) |z| > z1−α/2

Figure 2: Critical regions for testing H0 : µ= µ0 against (a) H1 : µ1 > µ0 , (b) H1 : µ1 < µ0, and

(c) H1 : µ1 6=µ0, based on z = x̄−µ0p
s2/n

∼ N (0,1).

3.3 Normal small sample case

For a small sample we would then have to find the distribution of

t =
X̄ −68

σ̂/
p

n

in order to compute the size of the critical region.

In fact we know that the distribution of t has a Student’s t distribution with n−1 degrees

of freedom so all we need to do is to find the critical region using tables of t rather than

Normal tables.

A sample of 10 batteries are randomly selected from a production batch and their life-

times found. The mean lifetime is 30.3 and the estimated variance is 16.08456. The man-

ufacturer claims a lifetime of 36 months. Suppose we assume a a normal population with

mean µ and test

H0 : µ= 36 against H1 : µ< 36

Then

t =
30.3−36
p

16.08/10
=−4.49

Now we find the critical region using the t distribution with 10-1=9 degrees of freedom. The

critical value is -1.833, for a test size of 0.05 ( check this ! ) so we have a value of t in the

critical region and we reject H0
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3.3.1 Summary

We have deduced the procedure given in statistical recipe books. Suppose we are given a

random sample X1, X2, · · · , Xn from a N(µ,σ2) distribution and we wish to test

H0 : µ=µ0 against H1 : µ1 >µ0, H1 : µ1 <µ0, H1 : µ1 6=µ0

then we compute

• For large samples ( n > 50) we compute

z =
x̄ −µ0p

s2/n
where s2 =

1

n −1

n
∑

i=1

(xi − x̄)2

and we reject H0 when z > z1−α, z <−z1−α, |z| > z1−α/2, see Figure 2.

• When the sample size is small, n < 50, we use the t distribution with n −1 degrees of

freedom and compute

t =
x̄ −µ0p

s2/n
where s2 =

1

n −1

n
∑

i=1

(xi − x̄)2

and we reject H0 when t > t1−α, t <−t1−α, |t | > t1−α/2 using Student’s t with n −1

degrees of freedom, see Figure 3.

(a) t > t1−α (b) t <−t1−α (c) |t | > t1−α/2

Figure 3: Critical regions for testing H0 : µ= µ0 against (a) H1 : µ1 > µ0 , (b) H1 : µ1 < µ0, and

(c) H1 : µ1 6=µ0, based on t = x̄−µ0p
s2/n

∼ tn−1.
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3.3.2 Variances

Suppose we are given a random sample X1, X2, · · · , Xn from a N(µ,σ2) distribution and we

wish to test

H0 : σ2 =σ2
0 against H1 : σ2 >σ2

0, H1 : σ2 <σ2
0, H1 : σ2 6=σ2

0,

our critical regions will be respectively

X 2 >χ2
1−α,n−1 , X 2 <χ2

α,n−1, X 2 >χ2
1−α/2,n−1 or X 2 <χ2

α/2,n−1,

where X 2 = (n−1)s2

σ2
0

has a Chi-squared distribution with n −1 degrees of freedom under H0.

(a) X 2 >χ2
1−α,n−1 (b) X 2 <χ2

α,n−1 (c) X 2 >χ2
1−α/2,n−1 or X 2 <χ2

α/2,n−1

Figure 4: Rejection regions for testing H0 : σ2 = σ2
0 against (a) H1 : σ2 > σ2

0, (b) H1 : σ2 < σ2
0,

and (c) H1 : σ2 6=σ2
0 based on X 2 = (n−1)s2

σ2
0

∼ X 2
n−1.

3.3.3 Example

We are given a random sample with n = 10 from a N(µ,σ2), where s2 = 12.6. For α= 0.05 we

test

H0 : σ2 = 9 against H1 : σ2 > 9.

The statistic is X 2 = (n−1)s2

σ2
0

with critical region X 2 > χ2
1−α,n−1 . Then X 2 = 9×12.6

9
= 12.6 and

χ2
0.95,9 = 16.919. So we have a value of not in the critical region and we cannot reject H0.

3.3.4 A Binomial/Normal example

We can use for large samples the normal approximation to the Binomial, to turn what are

essentially Binomial problems in to Normal ones. The binomial distribution is the discrete
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probability distribution of the number of successes in a sequence of n independent exper-

iments, each of which yields success with probability p. If X ∼ B(n, p) (that is, X is a bi-

nomially distributed random variable), then the expected value of X is E (X ) = np and the

variance is V ar (X ) = np(1−p). Therefore if n is large (n > 50) we can approximate the bino-

mial distribution with the normal distribution N (µ= np,σ2 = npq) or the standard normal

Z = (X −np)/
p

(npq). According to this approximation we test

H0 : p = p0 against H1 : p1 > p0, H1 : p1 < p0, H1 : p1 6= p0

by computing

z =
x̄ −np0

√

np0(1−p0)

and we reject H0 when z > z1−α, z <−z1−α, |z| > z1−α/2.

3.4 Sample size choice

In many situations we can use our definitions of the type I and type II probabilities to specify

the sample size we require.

3.4.1 A crossover trial

Suppose we wish to test the effects of two kinds of medication A and B on reducing blood

pressure in males. We intend to teat n patients for five weeks on A and five weeks on B. The

order of application will be randomized. The response is the average blood pressure in the

third week of each treatment.

If we pick α= 0.05 and β= 0.1 how large a sample do we need?

We assume that the responses Ai ,Bi , i = 1,2, · · · ,n are normal and look at the differences

Di = Ai −Bi , i = 1,2, · · · ,n. The test is

H0 : µD = 0 against H1 : µD > 0

Now the background to this experiment is that A is the current treatment and we expect to

see a change from A to B whose size is about 1/2 a standard deviation.

Back to definitions - in general

α= P (z > z1−a |H0 : µ=µ0) ⇐⇒ 0.05= P (z > z0.95|H0 : µ= 0) ⇐⇒P (z ≤ z0.95|H0 : µ= 0) = 0.95.

From the statistical tables (inverse normal) one can see that z0.95 = 1.645. Therefore the crit-

ical region is

z > 1.645⇐⇒
D̄ −µ0

σ/
p

n
> 1.645⇐⇒ D̄ >µ0 +1.645σ/

p
n

Now in addition we require

β= 0.1= P [D̄ ≤µ0 +1.645σ/
p

n|H1 : µ=µ1 =µ0 +
σ

2
] ⇐⇒
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0.1 = P [
D̄ −µ1

σ/
p

n
≤

µ0 +1.645σ/
p

n −µ0 −σ/2

σ/
p

n
|H1 : µ=µ1 =µ0 +

σ

2
] ⇐⇒

0.1 = P [z ≤
1.645σ/

p
n −σ/2

σ/
p

n
|H1 : µ=

σ

2
] ⇐⇒

0.1 = P [z ≤ 1.645−
p

n/2|H1 : µ=
σ

2
].

From the statistical tables (inverse normal) one can see that z0.1 =−1.2816. So

1.645−
p

n/2 =−1.2816⇐⇒ n = 35.

3.4.2 A Binomial/Normal case

A medic knows that of patients admitted to hospital for cardiac problem 60% will be readmit-

ted on an emergency basis within 2 months. She believes that treatment with X will reduce

this readmission level by half, that is to 30%. To check her theory she must experiment on

patients and to gain permission to do so she must show that her experiment has a reasonable

chance of detecting a change and uses the minimum number of patients.

This could be framed as a Binomial, with p the probability of readmission. Suppose we

take n patients and administer the drug to them. We set up the hypotheses

H0 : p = 0.6 against H1 : p < 0.6

We observe R of our n treated patients readmitted. We will assume that R is Binomial and

that we can approximate R by a Normal distribution.

Now how to specify the sensitivity of our procedure. We ask that the type II error proba-

bility be

β= P [R ≥ k|p = 0.3] = 0.1

You should check that you understand this!

I am going to specify the test size as α= 0.05

The critical region is of the form R ≤ k and assuming normality we have the definition of

test size

α= P [R ≤ k|p = 0.6] = 0.05

Using the normal approximation

0.05=α= P [R ≤ k|p = 0.6] = P [z =
R −np

√

np(1−p)
<−z1−a |p = 0.6] = P [z =

R −n ×0.6
p

n ×0.6×0.4
< za |p = 0.6].

From the statistical tables (inverse normal) one can see that z0.05 = −1.645. Therefore the

critical region is

R <n ×0.6−1.645×
p

n ×0.6×0.4

12



AKN/CMP2S11 Hypothesis Testing 2009/10

For the type II error

0.1 =β= P [R ≥ n ×0.6−1.645×
p

n ×0.6×0.4|p = 0.3] ⇐⇒

0.1= P
[

z =
R −np

√

np(1−p)
≥

n ×0.6−1.645
p

n ×0.6×0.4−n ×0.3
p

n ×0.7×0.3
|p = 0.3

]

⇐⇒

0.9= P
[

z <
n ×0.6−1.645

p
n ×0.6×0.4−n ×0.3

p
n ×0.7×0.3

]

.

From the statistical tables (inverse normal) one can see that z0.9 = 1.2816. Therefore

1.2816=
n ×0.6−1.645

p
n ×0.6×0.4−n ×0.3

p
n ×0.7×0.3

⇐⇒···⇐⇒ n = 22.
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