EXAMPLE 12-13

Suppose that $\Gamma=3$ 0 -1 for \mathbf{C}_{3v} . Determine the a_i 's in Equation 12.23.

SOLUTION: We use Equation 12.23 as a sum over classes, in which case we have

$$\begin{split} a_{A_1} &= \frac{1}{6}[(1)\times(3)\times(1)+(2)\times(0)\times(1)+(3)\times(-1)\times(1)] = 0 \\ a_{A_2} &= \frac{1}{6}[(1)\times(3)\times(1)+(2)\times(0)\times(1)+(3)\times(-1)\times(-1)] = 1 \\ a_E &= \frac{1}{6}[(1)\times(3)\times(2)+(2)\times(0)\times(-1)+(3)\times(-1)\times(0)] = 1 \end{split}$$
 or $\Gamma = A_2 + E$.

12–8. We Use Symmetry Arguments to Predict Which Elements in a Secular Determinant Equal Zero

Recall from Chapters 9 and 10 that we encountered molecular integrals of the type

$$H_{ij} = \int \phi_i^* \hat{H} \phi_j d\tau$$
 and $S_{ij} = \int \phi_i^* \phi_j d\tau$ (12.24)

We will now show that integrals like these will be equal to zero if we choose ϕ_i^* and ϕ_j such that they belong to different irreducible representations. For simplicity, we will prove this only for one-dimensional irreducible representations, but the result is general. Let's start with the overlap integral

$$S_{ij} = \int \phi_i^* \phi_j d\tau \tag{12.25}$$

This integral is just some number, and its value certainly cannot depend upon how we orient the molecule. A symmetry operation of the molecule \hat{R} transforms ϕ_i and ϕ_j to $\hat{R}\phi_i$ and $\hat{R}\phi_i$, respectively. The resulting (transformed) overlap integral is

$$\hat{R}S_{ij} = \int \hat{R}\phi_i^* \hat{R}\phi_j d\tau$$

Because the value of S_{ij} cannot change when we apply a symmetry operation of the point group of the molecule

$$\hat{R}S_{ij} = \int \hat{R}\phi_i^* \hat{R}\phi_j d\tau = S_{ij} = \int \phi_i^* \phi_j d\tau$$
 (12.26)

Suppose now that ϕ_i^* and ϕ_j are bases for the (one-dimensional) irreducible representations Γ_a and Γ_b . If that is so, then

$$\hat{R}\phi_i^* = \chi_a(\hat{R})\phi_i^* \quad \text{and} \quad \hat{R}\phi_j = \chi_b(\hat{R})\phi_j \tag{12.27}$$

In fact, Equations 12.27 are exactly what we mean when we say that ϕ_i^* and ϕ_j are bases for the one-dimensional irreducible representations Γ_a and Γ_b (see Example 12–9). If we substitute Equations 12.27 into Equation 12.26, we obtain

$$S_{ij} = \chi_a(\hat{R})\chi_b(\hat{R}) \int \phi_i^* \phi_j d\tau = \chi_a(\hat{R})\chi_b(\hat{R})S_{ij}$$
 (12.28)

Equation 12.28 requires that

$$\chi_a(\hat{R})\chi_b(\hat{R}) = 1$$
 for all \hat{R} (12.29)

Because $\chi_i(\hat{R})$ is either 1 or -1 for any one-dimensional irreducible representation, Equation 12.29 is true only if $\chi_a(\hat{R}) = \chi_b(\hat{R})$, or if Γ_a and Γ_b are the same irreducible representation. If $\chi_a(\hat{R}) \neq \chi_b(\hat{R})$, then $\chi_a(\hat{R})\chi_b(\hat{R})$ will equal -1 for some symmetry operation \hat{R} , and the only way that S_{ij} can equal $-S_{ij}$ in Equation 12.28 is for S_{ij} to equal zero. Thus, we have proved (at least for one-dimensional irreducible representations) one of the most useful results of group theory; namely, that S_{ij} must necessarily be equal to zero if ϕ_i^* and ϕ_i are bases of different irreducible representations.

Let's apply this result to the H_2O molecule (which lies in the y-z plane, Figure 12.6a) and evaluate S_{ij} for a $2p_x$ orbital on the oxygen atom ($2p_{xO}$) and the sum of the 1s orbitals on the hydrogen atoms ($1s_{H_A} + 1s_{H_B}$). This linear combination of hydrogen 1s orbitals is symmetric under all four operations of the C_{2v} point group, and so transforms as A_1 . We chose $1s_{H_A} + 1s_{H_B}$ rather than $1s_{H_A}$ or $1s_{H_B}$ individually for this very reason. The $2p_x$ orbital on the oxygen atom transforms as x, which transforms as B_1 according to Table 12.7. Therefore, we can say that the overlap integral of $2p_{xO}$ and $1s_{H_A} + 1s_{H_B}$ is zero by symmetry. Table 12.7 shows that the same is true for $2p_{yO}$, but not for $2p_{zO}$.

EXAMPLE 12-14

Show that the overlap integral involving $2p_{xN}$ and $1s_{H_A} + 1s_{H_B} + 1s_{H_C}$ in the NH₃ molecule (C_{3v}) is equal to zero.

SOLUTION: The linear combination $1s_{\rm H_A} + 1s_{\rm H_B} + 1s_{\rm H_C}$ belongs to the totally symmetric irreducible representation A_1 and, according to Table 12.9, $2p_{x\rm N}$ belongs to E. Therefore, the overlap integral is equal to zero.

The other integrals in a secular determinant are the H_{ij} in Equation 12.24. The molecular Hamiltonian operator is symmetric under all the group operations of the