UNIVERSITY COLLEGE LONDON

UNIVERSITY OF LONDON

EXAMINATION FOR INTERNAL STUDENTS

FOR THE FOLLOWING QUALIFICATIONS:

B.Sc. (Intercal)

Health Sciences C103: Biomaterial Science

COURSE CODE	:	HESCC103
UNIT VALUE	:	0.5
DATE	:	14-MAY-04
TIME	:	10.00
TIME ALLOWED	:	3 Hours

04-C0681-3-40 © 2004 University College London

TURN OVER

Answer **FOUR** out of **SEVEN** (20 marks for each question) Answer **EACH** question in a **SEPARATE** book

Use diagrams to illustrate your answers where possible.

- 1. Ceramic materials are described as being bio-inert or bioactive. With examples from each group, describe the fabrication, uses and benefits of using bio-inert and bioactive ceramics.
- 2. It is possible to group most modern tissue engineering biomaterials into 'synthetic polymer based' and 'native protein/polysaccharide based'. With examples of each, outline advantages and disadvantages of each group and explain how current research attempts to solve these problems.
- 3. Describe the differences in the biological and mechanical processes involved in aseptic loosening between an acetabular cup and a femoral stem.
- 4. Discuss the applications and limitations of a tissue engineering approach to the repair of tendon injury.
- 5. Biocompatibility implies that a material does not have a toxic effect when placed in the body.
 - a) What is the difference between BIOSAFETY and BIOFUNCTIONALITY?
 - b) Describe how you would assess the biocompatibility of an orthopaedic biomaterial.
- 6. Discuss the function of an orthopaedic bone cement in hip replacement and highlight the advantages and disadvantages of acrylic bone cements and comment on their current improvements.
- 7. Define:
 - i. Osseo-induction
 - ii. Osseo-conduction
 - iii. Osseo-integration
 - iv. Bone bonding.

Give examples of biomaterials able to achieve these processes.

04-C0681-3-40 © 2004 University College London

END OF PAPER