UNIVERSITY COLLEGE LONDON

UNIVERSITY OF LONDON

EXAMINATION FOR INTERNAL STUDENTS

FOR THE FOLLOWING QUALIFICATIONS:

M.Sc.

Health Sciences C104: Biomechanics

COURSE CODE	:	HESCC104
UNIT VALUE	:	0.5
DATE	:	10-MAY-04
TIME	:	10.00
TIME ALLOWED	:	3 Hours

Answer **FOUR** questions out of **SIX** (20 marks for each question) Answer **EACH** question in a **SEPARATE** book

Use diagrams to illustrate your answers where possible.

- 1. The amplitude of force acting across the surfaces of the hip joint fluctuates in a regular pattern during walking.
 - a. Explain what determines:
 - i. the absolute amplitude of the forces
 - ii. the relative peaks and troughs, i.e. the maximum and minimum values, of the force within a gait cycle
 - b. How could you determine the force amplitude at the hip at a particular point in the gait cycle?
 - c. Explain what assumptions and/or approximations you would have to make in arriving at your results
- 2. Describe the relationship between fracture micromotion and union in long bone fracture.
- 3. You are asked to design a hip stem. What factors would you consider in determining the centre and size of the femoral head and why?
- 4. The incidence of osteolysis is much greater around hip joint replacements than around knee joint replacements. Discuss the reasons for this.
- 5. Describe the design features of total condylar knees and constrained knees and their clinical indications.
- 6. Describe the merits of using either instrumented implants or mathematical models to determine the forces applied to orthopaedic implants during activity.