UNIVERSITY COLLEGE LONDON

UNIVERSITY OF LONDON

EXAMINATION FOR INTERNAL STUDENTS

FOR THE FOLLOWING QUALIFICATIONS:

M.Sc.

Orthopaedics 3002: Biomaterials and Biomechanics

COURSE CODE : ORTH3002

DATE: 20-MAY-05

TIME: 10.00

TIME ALLOWED : 3 Hours

05-C1007-3-50

© 2005 University College London

TURN OVER

SECTION A

Answer **TWO** questions out of the following **THREE** (25 marks per question) Use diagrams to illustrate your answer where appropriate

Answer each question in a **SEPARATE** book

- 1. Compare and contrast the kinematics of the normal knee with those of a replaced knee joint. What determines the kinematics of the knee joint in these two situations?
- 2. In uncemented implant fixation bone contact and osteointegration are essential for long-term implant success. Discuss how implant surfaces can be engineered to enhance bony integration and improve implant fixation.
- 3. Discuss the processes and mechanisms of using tissue engineering techniques in repairing non-union bone fracture.

05-C1007-3-50

© 2005 University College London

TURN OVER

SECTION B

Answer **SIX** questions out of the following **EIGHT** (5 marks per question) Use diagrams to illustrate your answer where appropriate

Answer each question starting on a **NEW PAGE** of the answer book

- 1. Give 2 reasons for needing to know the forces acting at joints *in vivo*. Briefly contrast the techniques of *in vivo* measurement and mathematical modelling.
- 2. Describe advantages and disadvantages in using forged femoral components as opposed to a cast femoral component.
- 3. List 5 factors that affect bone apposition to the implant surface in the short term (up to 3 months) following surgery. List 5 factors that affect bone-implant interface in the long term (>3 months) following surgery.
- 4. Define the *fit* and *fill* concept in relation to the prosthetic hip stem in the femoral cavity. Give 2 reasons why *fit* is more clinically relevant than *fill*.
- 5. In total knee design, briefly describe the differences between the dished tibial tray and flat tibial tray in terms of their clinical applications.
- 6. List and briefly describe the classic stages of the fracture healing processes.
- 7. List the major advantages and disadvantages of using large femoral heads and small femoral heads in total hip replacements.
- 8. Describe the main features of posterior stabilized knee design and its function.

05-C1007-3-50

© 2005 University College London

END OF PAPER