UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

Mathematics C333: Theory Of Numbers I

COURSE CODE	: MATHC333
UNIT VALUE	: 0.50
DATE	: 25-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. (a) State and prove the fundamental theorem of arithmetic.
 - (b) Letting $\pi(x)$ denote the number of primes $p \leq x$, prove that $\pi(x) \ge \log(x) 1$.
 - (c) Show that there can be arbitrarily large gaps between consecutive primes.
- 2. (a) State and prove the Chinese remainder theorem.
 - (b) Find all solutions to the system of congruences

$$\begin{array}{rcl} x &\equiv& 2 \pmod{5}, \\ x &\equiv& 5 \pmod{7}, \\ x &\equiv& 3 \pmod{8}. \end{array}$$

- (c) Find all solutions to the congruence $x^2 + 4x + 3 \equiv 0 \pmod{15}$.
- 3. (a) Let f(x) be a polynomial with integer coefficients, and let p be a prime. Show that there exists a polynomial g(x), with integer coefficients and of degree at most p-1, such that $f(x) \equiv 0 \pmod{p}$ and $g(x) \equiv 0 \pmod{p}$ have exactly the same solutions.
 - (b) Define the term *primitive root* modulo a prime p. Show that $3^8 \equiv -1 \pmod{17}$, and hence that 3 is a primitive root modulo 17.
 - (c) Solve, if possible, the congruences $x^{12} \equiv 16 \pmod{17}$ and $x^{11} \equiv 9 \pmod{17}$.

MATHC333

3

PLEASE TURN OVER

- 4. (a) Define Euler's totient function φ . What does it mean to say that φ is multiplicative?
 - (b) If

$$n = \prod_{i=1}^k \, p_i^{lpha_i},$$

where the p_i are distinct primes and the α_i are positive integers, state and prove a formula for $\varphi(n)$ in terms of the p_i and α_i . (It may be assumed that φ is multiplicative.)

- (c) Show that, if (a, n) = 1 and $\{x_1, \ldots, x_r\}$ is a reduced residue system modulo n, then so is $\{ax_1, \ldots, ax_r\}$. Hence prove Euler's theorem.
- 5. (a) Let p be a prime. Show that $x^2 \equiv -1 \pmod{p}$ is soluble if $p \equiv 1 \pmod{4}$, but is insoluble if $p \equiv 3 \pmod{4}$. (Any results assumed must be clearly stated.)
 - (b) Let $p \equiv 1 \pmod{4}$ be a prime. Show that p can be expressed in the form $p = a^2 + b^2$, with a and b integers.
 - (c) Define the Legendre symbol $(\frac{a}{p})$. Determine whether or not the congruence $x^2 + 4x \equiv 7 \pmod{101}$ has a solution. (Any results assumed must be clearly stated.)