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All questions may be attempted but only marks obtained on the best four solutions will
count.

The use of an electronic calculator is not permitted in this ezamination.

1. Let A be an n x n matrix over a field F. Define the trace Tr(A) of A and show
that if B is also an n x n matrix over F then Tr(BA) = Tr(AB).

If G is a finite group explain what is meant by
(i) a representation of G over F , and
(ii) the character x, of a representation p of G.

If p, o are n-dimensional representations of G such that x, # x, prove that pis
not conjugate to o.

Hence show that the representations p, o of the cyclic group Cy = (z | z* = 1)
given below are not conjugate provided 1+1# 0inF ;

0 1 0 0 1 0
pzy=11 0O 0 ; oz)=]1 -1 0 O
60 0 -1 0 0 1

2. State Schur’s Lemma.

Let G be a finite group and let F be a field in which |G| is invertible. If M is
a finitely generated module over F[G] and N C M is a submodule, prove that
M 2 N @ (M/N).

Explain briefly the main steps in showing that F[G] is a direct product

F[G] = Md1 (Dl) X ... X Mdm(Dm)

where Dy, ..., D,, are finite dimensional division algebras over F.

In the case where F = C, state, without proof, an interpretation of m in terms of G,
and find m and di,...,d,, when G is the nonabelian group of order 21 defined
by the presentation

G(21) = (z,y | 2" =y® =1, yz = 2%y).
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3. Let p1,..., pm be the distinct simple representations of the finite group G over C

where p; : G — GL4,(C) and let ¢; be the central idempotent of C[G] associated
with p;. State and prove a formula which expresses ¢; in terms of the character x;
of Pi-

Hence show that decxi(g"l)xj(g) = |G| ;.

Find the central idempotent ¢; explicitly when G is the alternating group A, of
order 12

G=Ay=(s,t,z|*=t*=(st)> = 1,zsz7! = t,xtz" = st)

and p; : Ay — GL3(C) is the simple representation defined on generators by

-1 0 0 1 0 0 00 1
pi(s)=]1 0 1 0 ;o p(t)=]1 0 -1 0 s plz)=] 1 0 0
0 0 -1 0 0 -1 0 10

. If A, B are algebras over a field F describe briefly how the tensor product A ® B
may also be regarded as an algebra.

Explain how a group ring of the form F[G x H] may be described as a tensor
product algebra.

Describe briefly a calculation which shows that My, (F) @ M, (F) = M, (F).
(You may assume without proof the standard rules for manipulating the tensor
symbol ®.)

A certain group I of order 20 has the Wedderburn decomposition
CIl =2 CxCxCxCxMy(C).
Describe the Wedderburn decomposition of T" x I ; hence find

(i) the number of distinct simple 4-dimensional representations of ' x I ;

(ii) the largest dimension of any simple representation of I' x ' x T .
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5. A finite group G is expressed in the form G = KQ where K, @) are subgroups of
G such that K <G and K NQ = {1}, and denote by ¢ : @ — Aut(K) the
homomorphism (g)(k) = gkg™! for g€ Q and k€ K . If p: K = GL,(C) is
a representation explain how to construct the induced representation

Id%(p) : G — GLujg)(C).

Let G = (r,y|z®=19%=1, yz =z 'y) be the dihedral group of order 18 ;
taking K = () to be the normal subgroup generated by =z and @ = (y) to be the
subgroup generated by y, let p: K — GL;(C) be the representation given by

2 2mi

plz) = w* 5 (w=exp(5) )

Calculate the explicit form of the matrices representing =z and y in the induced
representation Ind$ (p).

Hence show that Ind$ (p) is simple.
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