UNIVERSITY COLLEGE LONDON ## University of London ## **EXAMINATION FOR INTERNAL STUDENTS** For The Following Qualifications:- B.Sc. M.Sc. M.Sci. **Mathematics C393: Probability** COURSE CODE : MATHC393 UNIT VALUE : 0.50 DATE : 17-MAY-05 TIME : 14.30 TIME ALLOWED : 2 Hours All questions may be attempted but only marks obtained on the best four solutions will count. The use of an electronic calculator is **not** permitted in this examination. - 1. (a) State and prove the two Borel-Cantelli Lemmas. - (b) Assume $A_1, A_2, ...$ are events in a probability space $(\Omega, \Sigma, \mathbb{P})$. Does $\mathbb{P}(A_n \text{ i.o.}) = 0$ imply $\sum \mathbb{P}(A_n) < \infty$? - (c) Let X_1, X_2, \ldots be IID RVs with exponential distribution of parameter 1. Set $$X = \limsup \frac{X_n}{\log n}.$$ Show that X = 1 almost surely. (d) Let X_1, X_2, \ldots be random variables such that $$\mathbb{P}(X_n = -1) = 1 - 1/n^2 \text{ and } \mathbb{P}(X_n = n^2 - 1) = 1/n^2$$ and set $S_n = \frac{1}{n}(X_1 + \ldots + X_n)$. Prove that $\mathbb{E}X_n = 0$ for every n but $\mathbb{P}(\lim S_n = -1) = 1$. [Hint: Show that, with probability one, all but finitely many X_n are equal to -1]. - 2. (a) State and prove Chebyshev's inequality. - (b) Prove that if X is a random variable in \mathcal{L}^r and $1 \leq p \leq r$, then X is in \mathcal{L}^p and $$(\mathbb{E}|X|^p)^{\frac{1}{p}} \leqslant (\mathbb{E}|X|^r)^{\frac{1}{r}}.$$ - (c) Suppose that X, Y are independent random variables on $(\Omega, \Sigma, \mathbb{P})$ and $X, Y \in \mathcal{L}^1$. Show that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. - (d) Let X_1, \ldots, X_n be IID RVs with (the same) continuous distribution function. Let B_k denote the event that $X_k > X_i$ for all $i = 1, 2, \ldots, k-1$ (i.e., X_k is a record). Show that $P(B_n) = 1/n$. Are the events B_k, B_n (k < n) independent? - 3. (a) Prove the strong law of large numbers for IID RVs X_1, X_2, \ldots assuming that $\mathbb{E}|X_n|^4 < \infty$. - (b) State and prove the Bernstein-Hoeffding inequality. - (c) Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be a sequence of σ -algebra. Define the tail σ -algebra. State and prove Kolmogorov's 0-1 law. PLEASE TURN OVER MATHC393 - 4. (a) Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space, X an integrable random variable, and \mathcal{F} a sub- σ -algebra of Σ . Define the conditional expectation $\mathbb{E}(X|\mathcal{F})$. Prove that it exists, and that if f and g are two versions of $\mathbb{E}(X|\mathcal{F})$ then f = g almost surely. - (b) Let X be a random variable with mean 0 and variance 1. Define the characteristic function ϕ of X and prove that ϕ is in C^2 , with $\phi'(0) = 0$ and $\phi''(0) = -1$. - (c) Let X_1, X_2, \ldots be a sequence of IID RVs with common characteristic function ϕ . Find the characteristic function of $$\frac{1}{\sqrt{n}} \sum_{1}^{n} X_{i}$$ in terms of ϕ . 5. Write an essay on martingales.