## **UNIVERSITY COLLEGE LONDON**

## University of London

## **EXAMINATION FOR INTERNAL STUDENTS**

For The Following Qualifications:-

B.Sc. M.Sc.

M.Sci.

**Mathematics C393: Probability** 

COURSE CODE : MATHC393

UNIT VALUE

: 0.50

DATE

: 17-MAY-05

TIME

: 14.30

TIME ALLOWED : 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) State and prove the two Borel-Cantelli Lemmas.
  - (b) Assume  $A_1, A_2, ...$  are events in a probability space  $(\Omega, \Sigma, \mathbb{P})$ . Does  $\mathbb{P}(A_n \text{ i.o.}) = 0$  imply  $\sum \mathbb{P}(A_n) < \infty$ ?
  - (c) Let  $X_1, X_2, \ldots$  be IID RVs with exponential distribution of parameter 1. Set

$$X = \limsup \frac{X_n}{\log n}.$$

Show that X = 1 almost surely.

(d) Let  $X_1, X_2, \ldots$  be random variables such that

$$\mathbb{P}(X_n = -1) = 1 - 1/n^2 \text{ and } \mathbb{P}(X_n = n^2 - 1) = 1/n^2$$

and set  $S_n = \frac{1}{n}(X_1 + \ldots + X_n)$ . Prove that  $\mathbb{E}X_n = 0$  for every n but  $\mathbb{P}(\lim S_n = -1) = 1$ . [Hint: Show that, with probability one, all but finitely many  $X_n$  are equal to -1].

- 2. (a) State and prove Chebyshev's inequality.
  - (b) Prove that if X is a random variable in  $\mathcal{L}^r$  and  $1 \leq p \leq r$ , then X is in  $\mathcal{L}^p$  and

$$(\mathbb{E}|X|^p)^{\frac{1}{p}} \leqslant (\mathbb{E}|X|^r)^{\frac{1}{r}}.$$

- (c) Suppose that X, Y are independent random variables on  $(\Omega, \Sigma, \mathbb{P})$  and  $X, Y \in \mathcal{L}^1$ . Show that  $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ .
- (d) Let  $X_1, \ldots, X_n$  be IID RVs with (the same) continuous distribution function. Let  $B_k$  denote the event that  $X_k > X_i$  for all  $i = 1, 2, \ldots, k-1$  (i.e.,  $X_k$  is a record). Show that  $P(B_n) = 1/n$ . Are the events  $B_k, B_n$  (k < n) independent?
- 3. (a) Prove the strong law of large numbers for IID RVs  $X_1, X_2, \ldots$  assuming that  $\mathbb{E}|X_n|^4 < \infty$ .
  - (b) State and prove the Bernstein-Hoeffding inequality.
  - (c) Let  $\mathcal{F}_1, \mathcal{F}_2, \ldots$  be a sequence of  $\sigma$ -algebra. Define the tail  $\sigma$ -algebra. State and prove Kolmogorov's 0-1 law.

PLEASE TURN OVER

MATHC393

- 4. (a) Let  $(\Omega, \Sigma, \mathbb{P})$  be a probability space, X an integrable random variable, and  $\mathcal{F}$  a sub- $\sigma$ -algebra of  $\Sigma$ . Define the conditional expectation  $\mathbb{E}(X|\mathcal{F})$ . Prove that it exists, and that if f and g are two versions of  $\mathbb{E}(X|\mathcal{F})$  then f = g almost surely.
  - (b) Let X be a random variable with mean 0 and variance 1. Define the characteristic function  $\phi$  of X and prove that  $\phi$  is in  $C^2$ , with  $\phi'(0) = 0$  and  $\phi''(0) = -1$ .
  - (c) Let  $X_1, X_2, \ldots$  be a sequence of IID RVs with common characteristic function  $\phi$ . Find the characteristic function of

$$\frac{1}{\sqrt{n}} \sum_{1}^{n} X_{i}$$

in terms of  $\phi$ .

5. Write an essay on martingales.