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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Determine a function f(t) of the complex variable ¢ and contours C; and C, so that

/ €7t £(t) dt (6 =1,2)
C;
are non-trivial independent solutions of the differential equation
d*y dy
=2 (3z—-2=L =0 >
3xd:v2 (3z — 2) 7 Y 0 (z > 0)

Show that both solutions are bounded at z = 0 and z = 400, but only one solution
has a bounded derivative at z = 0. If y(0) = 1 for this solution, show that

P |
y'(0) = 3"
[You may assume that
! p (N (w)!
/o w(1-u) du:m—uim' A w>-1)]

2. Explain what you understand by the terms centre, node, spiral point and saddle point
in relation to the differential equation

dy _ Q(z,y)
dr  P(z,y)’

If this equation is derived from the equation of motion of a particle moving in a
straight line, with y = dz/dt, show that the trajectory in the (z,v) plane is closed
if and only if the motion of the particle is periodic.

The equation of motion of a particle is

Initially z = 0 and the speed of the particle is V. Investigate the nature of the
singular points in the phase plane and give a sketch of the phase trajectories. Deduce
that the motion of the particle is periodic if |V| < 2/+/3. If Vi = 0, show that the
time period for the motion of the particle is

1 [7/2 1
(2V/3)2 / cosecz6df .
0
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3. Show that the differential equation

d*z dz

2z Tef@) — +9(2) =0, (e>0)

where f(z) and g(z) are integrable functions of z and € is a constant, can be ex-
pressed in the form

dy __ g(=)
dr  eF(z)—y’

where F'(z) = [7 f(t)dt, by means of the transformation
Z—f =y—eF(z).

Assuming that a unique periodic solution z(t) exists with maximum value A and
period T for all values of ¢, show that for a certain closed curve v in the (z,y) plane,

j{yf(:c) dz =0.
Y
If f(z) = sgn(|z] — 1) and g(z) = x, show that if € < 1, then

A 1
/0 (A% — 3:2)5f(:v) dr =0,

and deduce that A = sec(7/4 + ¢/2), where cos¢ = ¢ .

4. Show that the equation
Z+ef(z,2)+z=0,

where € is a positive constant and the dot denotes differentiation with respect to t,
possesses a solution of the form z = A(t) sin [t + ¢(¢)] if

A = —e f(Asiny, A cosx) cosx,
é = eA_lf(Asinx,Acosx) siny,

with x = ¢ +¢. If € < 1, describe a method for ﬁhding approximate solutions of
these equations.

For the case of Van der Pol’s equation, f(z,%) = (22 — 1) . If A(0) = Ag > 0 and
#(0) = ¢o, show that z(t) is given approximately by '

z(t) =2[1 — (1 — 4/A¢*)e )" 2sin (t + ¢y),
and deduce the limit cycle solution for z(t) .
[ You may assume that [J" cos?6df = 7 and 2" sin? 6 cos? §df = am.]
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5. State without proof a form of Watson’s Lemma. Throughout the interval a < ¢t < b,
the function f(t) is continuous and the function ¢(¢) is twice-differentiable with a
simple maximum at ¢ = 5, where a < t5 < b. Show that as z — +00,

(NI

b
/a =D f(t)dt ~ e f(ty) [Fj”%ﬂ}

How is this result modified when tg =aorty =b?

Hence, or otherwise, verify that as £ — +oo |

/ te tdt ~ /(2mz) T 7" .
0

[You may assume that (—3)! = /7 .]
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