UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc.

B.Sc.(Econ)

Mathematics B611: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE

: MATHB611

UNIT VALUE

: 0.50

DATE

: 20-MAY-05

TIME

: 14.30

TIME ALLOWED

: 2 Hours

Answer ALL questions from Section A.

All questions from Section B may be attempted, but only marks obtained on the best two solutions from Section B will count.

The use of an electronic calculator is not permitted in this examination.

Section A

- 1. (a) Explain what is meant by an elementary row operation and by a row echelon form. How can these be used to compute the rank of a matrix? How does the determinant of a square matrix change under elementary row operations? How can the determinant be computed using elementary row operations?
 - (b) Find a row echelon form of the matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & -1 & 4 & 3 & 2 \\ -1 & -4 & 4 & 0 & 2 & 4 \\ 0 & 0 & 0 & 1 & -2 & 5 \\ 3 & 8 & 2 & 8 & 8 & 8 \end{pmatrix}.$$

What is the rank of A?

- 2. (a) Give the definition of an eigenvalue, and an eigenvector of an $n \times n$ matrix A with real or complex entries.
 - (b) Explain why the eigenvalues of A are the roots of the characteristic polynomial of A.
 - (c) Find the eigenvalues and corresponding eigenvectors of the matrix

$$A = \left(\begin{array}{cc} 3 & 5 \\ 5 & 3 \end{array}\right).$$

(d) Show: If λ is an eigenvalue of an invertible $n \times n$ matrix A then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

- 3. (a) For an $m \times n$ matrix A and $b \in \mathbb{R}^m$, which of the following statements are true and which are false?
 - (i) If the linear system Ax = b has a unique solution x then n = m.
 - (ii) If the linear system Ax = b has a solution x then the rank of A equals the rank of the augmented $m \times (n+1)$ matrix (Ab).
 - (iii) If m > n and $b \neq 0$ then Ax = b has no solution.
 - (iv) If m = n and det $A \neq 0$ then Ax = b has a unique solution for every b.
 - (v) If m < n then Ax = 0 has a nontrivial solution.
 - (b) State Cramer's rule for the solution of a linear system Ax = b. When is this rule applicable?
 - (c) Using Cramer's rule, find y (only) from the system

$$x + y = 1$$
$$3x - z = -4$$
$$-3y + z = 3$$
.

Section B

- 4. (a) Let A be an $n \times n$ matrix. Give the definition of the inverse matrix A^{-1} .
 - (b) Find the inverse of the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix}.$$

- (c) Assume A and B are $n \times n$ invertible matrices. Prove that AB is also invertible and find its inverse.
- 5. Let Q be an $n \times n$ matrix with $Q^TQ = I$ (i.e., an orthogonal matrix).
 - (a) Show that $Qx \cdot Qy = x \cdot y$ for all $x, y \in \mathbb{R}^n$.
 - (b) Show that Q maps orthogonal vectors to orthogonal vectors, i.e., $x \perp y$ implies $Qx \perp Qy$.
 - (c) Show that |Qx| = |x| for all $x \in \mathbb{R}^n$.
 - (d) Show that every eigenvalue of Q has modulus 1.
 - (e) Find real numbers x, y such that the matrix $Q = \begin{pmatrix} x & -1 \\ 1 & y \end{pmatrix}$ is orthogonal. What is the geometric meaning of the linear transformation induced by this matrix Q?
- 6. (a) Define the following terms: subspace of \mathbb{R}^n , basis, dimension.
 - (b) For an $m \times n$ matrix A the null space of A is the set of all vectors $x \in \mathbb{R}^n$ such that Ax = 0. Show that this is a subspace of \mathbb{R}^n .
 - (c) Compute the dimension and find a basis of the null space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & -1 & 1 & 1 \\ 1 & 0 & 3 & 1 \end{pmatrix}.$$