## **UNIVERSITY COLLEGE LONDON**

**University of London** 

## **EXAMINATION FOR INTERNAL STUDENTS**

For The Following Qualifications:-

B.A. B.Sc. B.Sc.(Econ)M.Sci.

Mathematics B51B: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE : MATHB51B

UNIT VALUE

: 0.50

DATE

: 16-MAY-05

TIME

: 14.30

TIME ALLOWED : 2 Hours

Answer ALL questions from Section A.

All questions from Section B may be attempted, but only marks obtained on the best two solutions from Section B will count.

The use of an electronic calculator is not permitted in this examination.

## Section A

1. (a) Evaluate the integral

$$\iint_R \sqrt{x^2 + y^2} \, \mathrm{d}A,$$

where R is the region of the plane satisfying  $1 \le x^2 + y^2 \le 9$ .

(b) Sketch the region S of the positive quadrant bounded by  $x^2 - y^2 = 1$ ,  $x^2 - y^2 = 16$ , xy = 2 and xy = 4.

By using the change of variable  $u=x^2-y^2$  and v=2xy or otherwise evaluate the integral

$$\iint_{S} (x^2 + y^2) \, \mathrm{d}A,$$

2. (a) Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + 2xy + y^2,$$

subject to the initial condition y = 0 at x = 0.

(b) Solve the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = \frac{\ln x}{x},$$

subject to the initial condition y = 0 at x = 1.

3. (a) Find an invertible matrix P such that  $P^{-1}AP$  is diagonal, where A is the matrix given below.

$$A = \left[ \begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array} \right].$$

(b) Solve the following system of simultaneous differential equations subject to the initial conditions  $x_1(0) = 1$  and  $x_2(0) = 0$ 

$$\begin{array}{rcl} \frac{\mathrm{d}x_1}{\mathrm{d}t} & = & 4x_1 - 2x_2, \\ \frac{\mathrm{d}x_2}{\mathrm{d}t} & = & x_1 + x_2. \end{array}$$

## Section B

4. (a) Solve the difference equation

$$x_{n+2} - 2x_{n+1} + x_n = 8,$$

subject to the initial conditions  $x_0 = 1$  and  $x_1 = 7$ .

(b) Solve the difference equation

$$x_{n+2} + x_n = 2n + 4$$

subject to the initial conditions  $x_0 = 6$  and  $x_1 = 9$ .

5. (a) Find the minimum of  $x_1^2 + x_2 + x_3^2 + x_4^2$  subject to the constraints

$$x_1 + x_2 + x_3 = 3$$
 and  $x_2 + x_4 = -1$ .

- (b) Find the minimum and maximum values of  $x^2 + 3y^2$  subject to the constraints  $x \ge -1$ ,  $y \ge -5$  and  $y \le 4 x^2$ .
- 6. (a) Find the solution of the differential equation

$$2xy\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y^2,$$

corresponding to the initial condition y = 0 at x = 1.

(b) Find the solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 4\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 2\cos x \sin x + 8\cos 2x,$$

corresponding to the initial conditions y = 4 at x = 0 and  $\frac{dy}{dx} = 0$  at x = 0.

- 7. (a) Find the first four terms of the Maclaurin series expansion of  $f(x) = \ln(a+x)$ , where a > 0 is a constant.
  - (b) Evaluate the following integral. Your final answer should not contain gamma or beta functions. (Any properties of the gamma and beta functions that you use should be clearly stated.)

$$\int_0^{\pi/2} \cos^5 x \sin^6 x \, \mathrm{d}x.$$

(c) Let  $A_n$  and  $B_n$  be given by the binomial coefficients  $A_n = \binom{4n}{2n}$  and  $B_n = \binom{6n}{n}$ . Given that  $5^5 > 36 \times 3^4$  use Stirling's formula to find

$$\lim_{n\to\infty}\frac{A_n}{B_n}.$$

MATHB51B