UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.A.

B.Sc.

B.Sc.(Econ)M.Sci.

Mathematics B51A: Mathematics for Students of Economics, Statistics & Related Disciplines

COURSE CODE

: MATHB51A

UNIT VALUE

0.50

DATE

: 08-MAY-03

TIME

: 14.30

TIME ALLOWED

: 2 Hours

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. Evaluate the following limits (without using L'Hôpital's Rule):
 - a) $\lim_{x\to\infty} \frac{x+3}{x+2}$,
 - b) $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$,
 - c) $\lim_{x\to 0} \frac{-1+\cos x}{2x^2}$,
 - d) $\lim_{x\to 0} \frac{\cos x \sec x}{\sin x}$
- 2. a) Differentiate from first principles $\sqrt{9-x^2}$.
 - b) Differentiate
 - i) $\ln \cos \frac{3}{x}$,
 - ii) e^{5x^7} ,
 - iii) $x^{2\cos 3x}$.
 - c) Find the *n*-th derivative of $\frac{1}{\sqrt{x+2}}$.
- 3. Find the following integrals:
 - a) $\int x \sin x dx$,
 - b) $\int \frac{x^{11}}{x^6-1} dx$,
 - c) $\int \frac{1}{x^2 4x + 3} dx,$
 - d) $\int_0^{\pi/2} \frac{1}{(1+\cos x)^2} dx$,
 - e) $\int_1^e \frac{\ln x}{2\sqrt{x}} dx$.

- 4. Determine whether or not the following series converge or diverge, clearly stating any tests used.
 - a) $\sum_{n=1}^{\infty} \frac{1}{2n(n+1)}$,

 - b) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$, c) $\sum_{n=1}^{\infty} \frac{1}{\ln(n+1)}$,
 - d) $\sum_{n=1}^{\infty} \cos \frac{\pi n}{4}$
 - e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$.
- a) Find the real and imaginary parts of the complex numbers: 5.

 - i) $\frac{2+3i}{1+i}$, ii) $(1+i)^{2i}$.
 - b) Solve the equations:
 - i) $z^3 + 1 = i\sqrt{2}$.
 - ii) $(z+1)^3 + (z-1)^3 = 0$.
- a) Show that $f_{xy} = f_{yx}$ for $f(x, y) = x^3 2x^2 xy + y^3$.
 - b) Use differentials to approximate the change in

$$f(x,y) = x^2 - 2x^2y^3 + 5x - 2y^2 + 5$$

if (x, y) changes from (1, 2) to (0.98, 2.03).

- c) Find $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ for $w = u^2 \cos v$, $u = x^4 2y^4$ and $v = xy^3$.
- d) If z = f(x, y) satisfies the equation

$$x^2z^3 + xy^3 - z^3 + 4yz - 6 = 0,$$

find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

7. a) Find the absolute maximum and minimum of

$$f(x) = x^3 - 5x^2 + 2$$
 on $[0, 2]$.

- b) Find the critical numbers of the following functions and determine the local minima and local maxima.
 - i) $f(x) = 1 |x|^{1/3}$,
 - ii) $f(x) = \frac{2x-3}{x^2-2}$.
- c) For each of the following functions g determine whether it satisfies the hypotheses of the Mean Value Theorem on the indicated interval [a, b]. If so, find all numbers c in (a, b) such that g(b) - g(a) = g'(c)(b - a).

 - i) $g(x) = x + \frac{2}{x}$ on [1, 2], ii) $g(x) = \sqrt[3]{x^2}$ on [-1, 1].