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All questions may be attempted but only marks obtained on the best four solutions will

count.

The use of an electronic calculator is not permitted in this examination.
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1. (a) Determine which of the following equations is a valid tensor equation. Describe
the errors in the other equations.

(i) f=G"K, H L%
(ii) P, = ASBy + U VW,
(iii) Xab = Q% + UsW,
(iv) h = 8°V® — 8°8,2,°

(b) Describe how the Riemann tensor R%,.4 transforms from unprimed coordinates
X to primed coordinates X'.

(c) Consider a two-dimensional manifold M with coordinates X! and X2. Suppose

the metric is
(2 0
gab - 0 _1

Also let V* be a vector and Qg, T% be tensors with values

Vi = 4, Vi=1,
Qu = 1, Q12=3, Qan =5, Sp=7,
T = 0, T?=2 T¥=4 TZ=6.

Find the following:
(i) V-V;
(i) R = T%Qpq.
(iii) T°,.
(d) Using index notation prove the vector identity

V- (AxB)=B-VxA-A -VxB.

(e) Consider a four-dimensional manifold with an anti-symmetric tensor A% and
a symmetric tensor $°®. How many independent components does A% have?
How many independent components does S% have?

(f) Suppose a tensor A has components A% in the Earth frame E and components
Ag' in the space frame S. Show that if A% is anti-symmetric then A% will also
be antisymmetric.
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2. For this question, assume Special Relativity holds (i.e. flat space with g,; = 74s)-

(a) Write down the Internal Maxwell Equation for a = 0, b = 2, ¢ = 3, expressing
this equation in terms of the electric and magnetic fields.

(b) Show that the Internal Maxwell Equations are trivial (i.e., they give no infor-
mation) if two of the indices are equal (e.g. if a =b=1).

(c) Let €% be the totally antisymmetric Levi-Civita tensor. In terms of this
tensor, the dual Faraday tensor is defined as *Fab = 1/2¢%4F,;. Derive a

b
simple expression for 8 *F™ from this definition and the Internal Maxwell
Equations, showing your work.

(d) Express *FabFab in terms of E and B (you may use the expressions for F,;, and
*ptt given on the first page).

(e) In terms of the 4-vector potential ¢,, the Faraday Tensor Fy, is F,p = Oppy —
O.¢s. The helicity four-vector h® is defined as

Show that h® is conserved (9,h® = 0) if the electric and magnetic fields are
everywhere perpendicular.

3. (a) Consider a particle of mass m moving in a geodesic around an object of mass
M whose gravitational field is described by the Schwarzschild metric. The
particle moves in the plane § = 7 /2. The Schwarzschild metric in this plane
has two symmetries. What are they? Show from the goedesic equation or
Noether’s theorem that the particle’s orbit has two conserved quantities £ and
h. Express dt/dr and d¢/d7 in terms of k£ and h.

(b) Change variables from 7 to u = 1/r and parametrize the orbit by ¢ rather than
7. Find the orbit equation for (du/d¢)?.

(c) Let E = mk and L = mh. From the orbit equation, derive the second order
equation
d’u  rom? wt 3
— = — —Tou”.
A2 ~ 202 2"

(d) Consider a photon with m = 0. Show that the photon has a circular orbit at

2
U= U = )

Next suppose that a photon is in a nearby orbit, with u = u.(1+ ¢) with initial
condition de/d¢(¢ = 0) = 0. What is the differential equation for €? Show
that the photon will either spiral in to r = 0 or escape to r = oo.
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4. Consider a two-dimensional surface embedded in three-dimensional Euclidean space

(e.g. the surface of a bowl). Using cylindrical coordinates (r, ¢, z), the surface is
specified by the function z = 2v/r — 1 for r > 1.

(a) Letting X! = r and X? = ¢, show that the metric of this surface is
0
Gab = (r(—)l ,,.2) -
Also find g%.

(b) Calculate the Christoffel symbols ', for this metric.

(c) From the geodesic equation, find the differential equations for a geodesic, i.e.
find d?r/ds? and d2¢/ds? for a geodesic parameterized by s.

(d) Show that the metric has a symmetry, and hence there exists a conserved
quantity (call it K') along each geodesic. Express d¢/ds in terms of K.
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5. Consider the surface of the Earth (assumed to be perfectly spherical). In terms of
its radius R, co-latitude @ and longitude ¢, the metric line element is

ds® = R? (dO2 + sin? 0d¢2) i

(a) Suppose a ship at some position (6, ¢) travels with compass bearing ¥ (e.g. ¥ =
0 if the ship is heading North, and ¢ = /4 if the ship is heading Northeast). If
the ship travels a small distance, with a change 46 in co-latitude and a change
d¢ in longitude, what is the ratio ¢/d¢ in terms of 7

(b) A Mercator map projection uses coordinates (z,y), where the coordinate trans-
formations are

T = adg,

= alo cote
Yy = g 2

with a constant. Find éy/dz in terms of 66/6¢. Consider a direction on the

Mercator map which makes an angle of {/; with respect to the vertical. Show
that ¢ = .

(c) Find the metric line element ds? for the Mercator coordinates z and y (hint:
you may use the identity sin @ = 1/ cosh(log cot g) without proof).

(d) A conformally flat metric in two dimensions has the form

gab=f((1) (1))

where f is some function of position. What is the function f for the Mercator
map? An angle n between two vectors V2 and W? can be defined by

(gabV“Wb)2
(9eaVeVe) (ges WeW )’

cos’n =

Show that the angle 7 is independent of the function f.

(e) A polar map projection uses coordinates (X!, X?) = (p, A) where
p= Rsinf, A = ¢.

What is the metric in these coordinates? Is this metric conformally flat?
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