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All questions may be attempted but only marks obtained on the best four solutions will

count.
The use of an electronic calculator is not permitted in this ezamination.

1. A heavy chain of length ¢ has density p per unit length and hangs under gravity
from two fixed points distance 2a apart on the same horizontal level. Write down
an integral expression for the length £ of the chain if coordinates (z,y) are chosen
with the z-axis horizontal and the origin at one end of the chain.

Given that the potential energy V' of the chain can be written as
2a N2 1
V= —pgfo y[1+(y)7]* dz,

where g is the (constant) acceleration due to gravity, and that V is a minimum
when the chain hangs in stable equilibrium, deduce that y(z) satisfies the differential

equation
dy ? 2 2
) = -1
( dm) [y +h)" 1],

where h and k are constants. Hence show that the stable equilibrium shape of the
chain is a catenary with equation

y=—h+ k™" cosh [k(z — a)].
Show that equations which determine the constants h and k are

k¢ = 2sinh (ka) , kh = cosh (ka) .

2. (a) Find the general solution of the partial differential equation

(b) Determine the integral surface z = f(z,y) which satisfies the partial differential

equation
0z Oz

y%-l-may

and contains the curve z = cosz, y = 0.

= zy O<y<z)
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3. Derive D’Alembert’s solution

z-+ct

z(x,t):%[F(:E—f-ct)—FF(a:—ct)]-f-Qic/ . G(&) d¢

o
of the one-dimensional wave equation

&8z 10%z

—8'?2':'0—2-515—2, (*OO<.'13<OO, tZO)

with ¢ a constant, when the initial conditions are
2(z,0) = F(z), z(z,0)=G(z) (—o0o<z<o0).

If F(z) =0 for —oo <z < o0 and

COSTT (|z| < 4

to|

Glz) =

0, (lz] > 3)

display the values of z(z,t) for ¢ > 0 in an (z,t) plane diagram.

[\ 1o

Ift > 1/2c, show that there is a range of values of z over which z(z, t) has a constant
value.

If t < 1/2¢, show that there is a range of values of z over which z(z,t) represents
a stationary wave.

4. An infinite string lies along the z-axis which is horizontal and is stretched under
constant tension 7. For z < 0 the density of the string is p; while for z > 0 the
density is po, where p; and p; are constants with ps > p; .

Write down the differential equations which are satisfied by the displacements z1(z, t)
and zo(z,t) for z < 0 and z > 0 respectively, if the string performs small transverse
oscillations in the horizontal plane.

What conditions must be satisfied by z;(z,t) and z(z,f) at £ =07

A simple harmonic wave Ae{™t=F2) with A, k; and n; real positive constants,
travels along the part of the string for which z < 0 in the direction of increasing « .
Write down the expression for the wave speed ¢; in terms of k; and n; .

The wave is partly reflected and partly transmitted at z = 0 on account of the
discontinuity in the density of the string. Determine the amplitudes of the reflected
and transmitted waves in terms of A and the ratio pa/p;, and comment on the
limiting cases when py/p; — 1 and po/p; — 0.
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5. Write down the steady and unsteady solutions in variables separable form of the

heat equation

%0 100

o2 o2t
where 0(z,t) denotes temperature and « is the (constant) thermal diffusivity.
A thin uniform rod AB of length L, has its end A maintained at 0°C and its end
B maintained at 50°C for ¢ < 0 by heat sources. At ¢ = 0 the heat source is
removed from the end A which is then insulated while the temperature of the end
B is maintained at 50°C for ¢t > 0.
With z = 0 at the end A of the rod, show that the temperature 6(z,t) in °C at any
point of the rod for ¢ > 0 is given by

400 & (2n + D)z —(2n + 1)%027%]
bet) =50 - 25 2,7 2n+1)2 [ 27, JGXP{ 4T '

n=0

6. Laplace’s equation in plane polar coordinates (r, §) is

0% 19 1 5°®
2 __— - =
v 67‘2+r87"+7"2892 0.

Determine all single valued solutions of this equation in variables separable form
R(r)©(0).

The functions ®o(r, 8) and ®(r,8) are solutions of
V2o, =0, (r>1)

V29, =0. (0<r<1i)

and satisfy the boundary conditions

(a) ®o—rcosf@ — 0asr— o0,

(b) &, is bounded at r =0,

(c) ®1+2%=4, (r=1)
02, _ 0% _

(d) or  or (r=1)

Determine the functions ®y(r,8) and ®,(r,8) and verify that

27
/ ®,(1,0)dd = 8.
0
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