1. (a) Define what is meant by a “conservative vector field”. If the curl of a field F

vanishes, then what can one say about the field /' being conservative or not?
The vector fields F'y(x,y,2) and Fy(z,y, z) are defined, in Cartesian coordinates,
by:
Fi(zy.2) = (2uy—2")g, +2°%, — (buz' +1)e.
Foz,y,2) = (2zy = 2°)é, +2%¢, + (52" + 1)é,

Is either of these vector fields conservative? Show which one of these field is con-
servative. For this field determine (up to an additive constant) the scalar potential
from which such a field arises.

(b) Stokes’ theorem states that the line integral of a vector field G along a closed
loop C'is equal to the flux of the curl V x G through the surface enclosed by C"

fGdr=[(vx@)-as,

where dS points towards the region of space from where an observer would see the
loop integral as anti-clockwise.

Consider the vector field G(z,y, z) given, in Cartesian coordinates, by:

Q(xv Y, Z) = 2yé{n - 3Zlﬁ'éy + Zzéz .
Find the curl V x G. Evaluate the line integral § G(z,y, z) - dr around the square
lying in the zy plane (z = 0) and bounded by the lines z = 3, x = 5, y = 1

and y = 3, either directly or by applying Stokes’ theorem (take the line integral
anti-clockwise as seen from the positive z semi-space).

(c) By virtue of the divergence theorem, the outward flux of a vector field G through
any closed surface S is equal to the volume integral of its divergence V - G over the
volume V' enclosed by the surface:

[Gas= [ v-cav,
S 1%
where dS points outward from the closed surface.

Consider the scalar field in Cartesian coordinates:

H(z,y,2) =2 +ay* — 2.

QUESTION CONTINUED



Express H in cylindrical polar coordinates p, 6 and z (where p?> = 2% + y? and
0 = arctan(y/x)). Given the expression for the Laplacian in cylindrical polar

coordinates

Vif =

13(57) 10%F  O°f
~ pdp

Pop) T o T o2
determine V2H (p, 0, 2).

Either directly or by applying the divergence theorem, evaluate the outgoing flux

of the gradient VH, given by
[xH-ds,

over the total surface of a cylinder of radius R and height h with its base lying on

the z = 0 plane and centred at the origin.

. Consider the following second-order linear differential equation

d*y dy

(1)

where b is a constant. By writing equation (1) in the form y” + p(z)y’ + q(z)y = 0,

or otherwise, determine where this equation is singular.

Solutions of equation (1) can be written in the form:
o
y:Zan:L'"+k, ag # 0.
n=0

Show that £k =0 or k = —1.

Derive the recurrence relation

n+k—>
(n+k+1)(n+k+2

Ap+1 )a'n .

Demonstrate that the series solutions converge for all values of x.

In the special case of b = m, a positive integer, show that the series with £ = 0

terminates at n = m to yield a polynomial solution.

Obtain this solution for the case of b = m = 2 and demonstrate that it satisfies

the differential equation (1).

CONTINUE
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3. If a matrix H is described as Hermitian, what property does it have? Prove that
the eigenvalues of a Hermitian matrix are real. What property must the associated
eigenvectors have? [7]

The matrix A is given by

5 =5 1
A=| -5 11 -5
1 =5 5
Is A Hermitian? What is its trace? [2]
Verify that \; = 16 is an eigenvalue of A and that its associated eigenvector can
1
1
be written as v; = —= -2

Ve

Show that Ao = 4 is also an eigenvalue and obtain the third eigenvalue, A\3. Find
the normalised eigenvectors corresponding to eigenvalues Ay and As. [11]

4. A particle of mass m = 1 is moving on a plane. Its position is represented, in
Cartesian coordinates, by the two-dimensional vector r = zé, + ye,.

The particle is subject to a conservative force field F(r), with potential energy
U(r) given by

Write down the general relation between the force F(r) and the potential energy

U(r) and use it to determine the force F(r) acting on the particle. (3]

Find the work done against the force F(r) when the particle moves from the point

(0,0) to the point (1,1) along the line z = y. [2]

Write down the particle’s equation of motion and show that it can be written as
r=Ar,

where A is the 2 x 2 real matrix [4]

1-(3 7).

Find the eigenvalues and eigenvectors of A. [5]

Use these eigenvalues and eigenvectors to obtain two uncoupled differential equa-

tions describing the motion. Solve these equations for the initial conditions x =
Yy = % =0 and i—j =2 at t = 0. Give explicit solutions for the variables x and

Y. (6]
TURN OVER



5. In atomic units the Schrodinger equation for the hydrogen atom can be written as

(-tyo-n

where, in spherical polar coordinates:

v2_ig ng + 1 2 Singﬁ + 1_8_2
Cr20r or r2sinf 06 00 r2 sin? 6 92
By writing
b = R(r)0(0)®(¢)
show that ®(¢) must satisfy the equation

2D ,

What are the solutions of this equation? Explain why m, the constant of separa- [4]
tion, must take integer values. 3]

Hence show that R(r) must satisfy the radial equation
1d

dR
<r2%> + Rr+ ERr’ = \R,

where A is another constant of separation. Obtain the corresponding equation for

O(0). [6]

For the special case of A = 0, show that the radial equation can be written as

1d*U 1
S Lt tE|lU=0
2 dr? * [r * }
where U(r) = rR(r). Show that for large values of r (3]

U(r) = Aexp(ar) + Bexp(—ar)

where o = (—2E)2. How can this solution be simplified for bound states of the
hydrogen atom? [4]

CONTINUED



6. (a) Any continuous function f(z) in —1 < x < 1 can be expanded in terms of
Legendre polynomials as

f(@)=> ayPy(z) for —1<z<+1.
n=0
Given the orthogonality relation
- P, P, d 0 _2
[, Pal@)Pufa)de = Sz

derive a formula for the coefficients a,,. [5]

Given the first two Legendre polynomials

find the first two coefficients ag and a; of the expansion of the function a e®*!
where « is real. [5]

(b) The electrostatic potential of a charge @) located on the z axis at the point
(0,0,d) (in Cartesian coordinates; note that d can be either positive or negative),
reads, in spherical polar coordinates:

Vi(r,0,¢)= e i(c—l>lﬂ(cosﬁ).

dmeor 5\ 7

Add now a second charge —@Q on the z axis at point (0,0, —d). Write down an
expression for the total potential Vi created by the charges () and —(@) in spherical
polar coordinates. [4]

Consider a charge ¢ very far from the origin (d < r). By approximating the total
potential V7 due to charges () and —() to the first non-zero term of the expansion in
Legendre polynomials, and using the expression of the gradient in spherical polars
(given below), find the electrostatic force acting on the charge ¢ in this case. [6]

The gradient operator in spherical polar coordinates is

V—A Q_FAEQ_FA Lg
T T 99 T singog

TURN OVER



7. (a) Let f(z) be a function of period 7 defined by
f(x) =sin(x) for — g <z < +g :
Is f(x) an even or odd function?

Show that the Fourier expansion of f(x) can be written as

= b, sin(2nz)

n=1
where the coefficients b, are given by [4]

2 (/2 )
b, = —/ sin(2nx) sin(z) dz .
T J—7/2

Determine the coefficients b,, and hence show that [5]

f(x) = 1 i(—l)”lfiznz sin(2nz) .

n n=1

Parseval’s identity for a function f(z) with general period 2L reads

2L/+L )P dr = (ap/2)* + = Za +b2) .

Apply Parseval’s identity to prove [3]

n? 2

2(1—4#)2 T 64
(b) The function g(x) is defined by
g(x) = sin(z) for —Il<az<+l,
glr) = 0 for |z|>1,

where [ is real and positive. The Fourier transform (k) of g(x) is defined as

ik m /+oo

Give the general way to obtain the original function g(x) from its Fourier transform
g(k) (i.e., to obtain the inverse Fourier transform of g(k)). (3]

—zk:c ) dr .

Prove that, in the limit [ — +o00, one has [5]

lim (k) = z\@ Gk +1) — 60k — 1],
where ¢ stands for the Dirac delta function.

END OF PAPER



PHAS2246: Mathematical Methods II1
2008/2009

Model solutions. A more detailed PROVISIONAL marking scheme is given here in
square brackets in the right-hand margin.

1. (a) A vector field F(r) is conservative if and only if there exists a scalar potential
U(r) such that F(r) = —VU(r) (book work).

If V. x F =0 then the field F is conservative (book work). The opposite impli-
cation (F conservative then V x F = 0) is also true.

Z X El - (ayFlz - azFly)ém + (azle - axFlz)éy + (axFly - ayle)éz =0 )
V xF, = —10z%, .

Hence, F; is conservative but F, is not.

The scalar potential U(z,y, z) such that F'; = —VU can be found by integrating
the components of F'; with respect to the corresponding variables and by comparing
the results obtained:

oU

or —(2ry — 2°) = UZ—/(2$y—25)d$+fx(yaz):—I2y—|—xz5+fw(y,z),
oU

Gy = 0 = U=—[2dtfe) =yt fee).

(9U 4 4 5

% = (bxz"+1) = U:/(5xz + 1) dz+ f.(z,y) = 22" + 2+ f.(z,y),

where the three functions f,, f, and f. have to be determined by consistency. The
only consistent option is f,(y,2) = 2, f,(z,2) = 22° + 2z and f.(z,y) = —x?y,
yielding

Ulx,y,2) = -2’y +22° + 2.

As can be directly verified, the negative gradient of this potential U is equal to the
field El’

(b) Evaluate the curl:

VxG = (8,G.—0.G))é, + (0.Gy — 0:G.)é, + (0,Gy — 0,G)e.

= —5¢, .

Because of Stokes’ theorem, since the area of the square is 4 and the curl V x G
points towards the negative direction, one has

Y{Q(x,y,z)~d£:—5><4:—20.

(c) In polar coordinates:

v=pcosl, z*+y*=p" = H=x2*+y*)—z2=p’cosld—=z

2]

[3]



= V?H(p,0,2z) =9pcos — pcost = 8pcosf .

(1]
Now, because the Laplacian V2H is just the divergence of the gradient VH, we
can apply the divergence theorem and evaluate the surface integral by integrating
V2H(p,0, z) over the volume of the cylinder: [2]

3

h R 27 SR 27
/ZH-dﬁz/ dz/ dp/ pd98p0089:h7/ cosfdf =0.
0 0 0 0



2. Look for a solution of the second-order differential equation

d?y dy

—+2—-2)—+by=0
T3 +(2—12) . + by
Gives p(z) = 2% and ¢(z) = L. [1]
This means the equation is singular at x = 0 only. (1]

At £ =0, pg = 2 and ¢y = 0, hence the indicial equation is written as

k(k—1)+2k=0

+k=0
So k=0 or —1. [3]
Yy = Z an "t )
n=0
y = Z an(n + k) 2"t
n=0
y' = > ann+k)(n+k—1)a"2.
n=0
(2]
Inserting these into the equation, we obtain
> an [(n+ k) (n+ k= D™ p 2(n+ k) 2 — (4 k) 2" 4 b ] =0,
n=0
which can be grouped as
Ya,(n+k)(n+k+ 12" =3 a, (n+k—0b)a"F.
n=0 n=0
Rearranging the left hand side so that we get the same powers of x everywhere, we
find
Z 1 (M K+ 1)(n+k+2)z" ™ = Zan (n+k—0b)a"™".
n=—1
4]

The recurrence relation can be read off directly and gives

an+1_ n+k—b
an  (n+k+1)(n+k+2)

To check for convergence, we use the d’Alembert ratio test, which requires that

U1 xn—i—l

R = <1

Ay T

9



in the n — oo limit. From the recurrence relation, we see that

R — m as n — 00 .
n
Clearly, in the limit of large n, we always have R < 1 so that the series converges
for all values of x.
Or state that there are no poles in the complex plane apart from x = 0 so the
solutions converges for all values of x.

For k = 0 and b = m, a positive integer, the recurrence relation becomes

Gnt1 n—m

a,  (n+1)(n+2)

The right hand side vanishes when n = m so that a,,.1 = 0. By repeated use of
the recurrence relation, all the subsequent terms are then also zero. (This last bit
is crucial.)

Forb=m =2 5
CL1:1X2CL0:—CL0
_1—2 _CLQ
“2=9%3" "%
CL3—O

xXr
y=(7—z+1a

6

, x

= (-1

Y (3 )ag
y//zla

30

which satisfies the equation.

10
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3. A Hermitian matrix is one for which A" = (A7)* = (4T = A

Consider the eigenvalue equation

HX=\X,

Take its Hermitian conjugate:

Multiply eq. (1) from the right by X

XTHX = XX, (2)

Go back to first Eq. and multiply it on the left by X7

XTHX=AXTX. (3)

The left hand sides of Eqgs. (2) and (3) are identical and so the right hand sides
have to be as well;
N=NXTX=0. (4)

But since all X' X = X2 are non-zero

which means that all the eigenvalues are real (adaptation of bookwork).
Eigenvectors for non-degenerate eigenvalues are orthogonal.

A is real and symmetric and hence Hermitian.

The trace of A is 5+11+5=21.

The characteristic equation is given by

5—A -5 1
|A— M| = -5 11—\ -5
1 -5 5—A
To verify that \; = 16, evaluate
—11 -5 1
-5 -5 =5
1 -5 —11

This equals zero since adding row 1 and row 3 gives twice row 2.

11

o

—
—
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=



To verify that v, is the associated eigenvector,

—11 =5 1 1 1 —114+10+1 0
(A—Ml) v, = — -5 -5 =5 -2 |=—=| -5+10-5 | =0 [,
V6 1 -5 —11 1 V6 14+10—-11 0
as required. It is a normalised eigenvector by inspection. [1]

To verify that Ay = 4, evaluate

1 =5 1
-5 7 =5
1 -5 1
This equals zero since the first and third rows are the same. [1]

The sum of the eigenvalues equals the trace of the matrix, so
A3=21—-16—4=1

Other methods of demonstrating eigenvalues and eigenvector accept- [1]
able.

For the second eigenvalue,

1 -5 1 V12 0
(A=Xl)v,=| =5 7 =5 v [=1 0 |,
1 -5 1 V32 0
so that vjg = —wvs2, hence vys = 0. The normalised eigenvector is therefore (to [2]
within a phase).
1
1
Vo = —= 0

Similarly for the third eigenvalue,

4 =5 1 V12 0
(A - Agl) U3 = -5 10 =5 V22 = 0 )
1 -5 4 V32 0

so that v13 = v33 and hence v9y = v15 = v32. The normalised eigenvector is therefore [2]
(to within a phase).

12



4. Relation between force F' and potential U (book work):
F(r)=-VU(r)

= E(r) = (22— V2y)e, — (y — V21)8, .

The force field is conservative (admits a potential U). The work W done against
the force is just given by the difference in the potential at the initial and final point:

W 3 3
Newton’s equation of motion:

F(r)=mi=7 = i=—(20—v2y)é, —(y—V2x)¢,,

which can be written in terms of components and matrices as:

. i\ 2e+V2y\ [ -2 V2 T\ _ 4,
=l )T v ) )y ) A
Characteristic equation of A:
M +30=0

= eigenvalues are 0 and —3.

Eigenvector related to 0:

(EE)0)-6) - ok

Up to normalisation, the eigenvector 1y corresponding to the eigenvalue 0 is

1
= V2
a1
Eigenvector related to —3:

(3 5)(1)-(%) = e=o

Up to normalisation, the eigenvector r_3 corresponding to the eigenvalue —3 is

7“;3=<_1ﬂ>'

In the new variables # = x/v/2+y and § = —/2x +, dictated by the eigenvectors
above, the second-order differential equations of motion decouple as

)

13
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N
|
(@)

<

|

[
W
<
S
D
S~—

with general solutions

i = At+B,

= C’sin(\/gt) + Dcos(\/gt) ) (7)

The requested initial conditions read, in terms of the new variables:

which imply
B=0, D=0, A=1, (C=-—

28

The requested solutions are thus

i o= t,

0 2 sin(v/3t)
= ———=9l ,

G

which can be expressed in terms of the original variables = and y by noting that:

Finally:

=

2 .
r = ?(tjtﬁsm(\/gt)),

y - —(t—%sin(\/gt)).

[GSRN )

14
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5. (This question is similar to material covered in the lectures where they
did separation of variables for Laplace’s equation)

U(r, 0, 0) = R(r) x ©(0) x ®(¢) .

2
@@ii <r2@>+R®;d <sin9@>+R@ L <d ®>+(%+E)R@<I>:0.

2r2 dr dr 2r2sin 6 df db 2r2sin% 4 \ dg?
Divide by RO ® and multiply by 2r?sin® 6 [2]
sinf d [ ,dR 1 d de 1 [(d*®
— (=) + = sinf — (sinf — | + 2rsin®’f(1+ E —|—)=0.
7 ar (7’ dr>—|—®smé’d9 (sm@ d9>+ rsin® (1 + 7’)—|—(I> (dgb?) 0

First 3 terms here depend upon r and # but last is a function purely of ¢. Since r, [1]
f and ¢ are independent variables, the third term must be some constant, denoted
by —m?. [1]

RTi> )
A

which has solutions e or, alternatively, cosm¢ and sin m¢. When ¢ increases
by 27, the solution returns to the same point; expect same physical solution. Thus
®(p + 2m) = P(¢). Can only be accomplished if m is a real integer. Then ®(¢) is
clearly a periodic function. [3]

The remainder of the equation can be manipulated (divide by 2sin?6 and rear-
range) into

1 d [ ,dR 1[m 1 1 d(.,do
LI (L IO ) LG S ey LA
2R dr <r dr>+r( + Er) zlsmw O sinf df <Sm d@)]

Left hand side is function only of r, while right hand side depends only on 6. [2]
Means that both sides must be equal to some constant, denote by A. Results in (o]
two ordinary DEs:

Ld 7“2@ +r(1+Er)R = AR,
2dr

dr
d (. dO . m?
20 <51n9 @> + <2)\ sin 6 — sinH) O = 0.

Let U =7rR and A = 0.

R =—rU+r'U

MR = -U+rU

d 2dR _ ! ! "
dr<r dr>_ U+U +rU

15



rU" 42U +2ErU =0

gives [1]
1d*U 1
———+ |-+ E|U=0
2 dr? * [r * }
For large r, % tends to zero so
U" = —-2EU
which has solution for o = (—2E)z (1]

U(r) = Aexp(ar) + Bexp(—ar).

For bound states this solution must be normalisable, however exp(ar) is infinite [1]
at 7 = 0o so cannot be normalised, therefore A = 0. 2]

16



6. (a) Multiplying the expansion of f(x) in terms of Fourier polynomials by P, (x)
and integrating over x yields [2]

/:1 Pp(z)f(x)dz = gan /:1 P (z)P,(z) dz .

Substituting the orthogonality relation into the RHS of the previous equation gives:

2]
+1 9 2
Pm d = nUmn [ ——
/_1 (@) () dv = nz%a m+1  Mam+1
Now, rearranging terms and renaming the label gives the general formula for the
coefficients a,, (book work) [1]
2 1 +1
a, = nT / P(x)f(z)dz .
2 -1
Notice that ae®?l is even. Applying the formula above, splitting the integration
domain and noting that P,(x) is even or odd for even or odd n, one has: [2]
1 p+1 +1 .
aoz—/ aeo‘mdx:/ aedr =[e"]; =" —1.
2/ 0
a; = 0 because P, (x)a e is odd. (3]
(b) If the second charge is added, the total potential is: [4]
0 7\ 00 l
Vr(r, 0 = Py(cos ) — Py(cos b
(1, 0,9) Treor {g (r) ) (cos g( . ) ) (cos )]
l l
Q@ (d > ) d
= Py(cos ) - Py(cos
Treor ; . )(cos 6) + g ) (cos 0)
l
2Q0 X [(d
= - | P 0
dmegr l%:d (7’) 1(cos 6)
(the even terms in the two expansions cancel each other out). Hence, [ = 1 is
the first non-vanishing term (“dipole” term) and, for d < r, the potential can be
approximated as [2]
Q d Qd
0, —P f) = ——— cos ¥
Vi (r, 0, ¢) ~ G 1 (cos ) = " Ccos
The resulting electrostatic force is thus given by [4]
d 0 1 0 d
F e —quvp = Q14 (ot Lgcost N Q0 g she, 1 sindey).
2meg r2 roor? 2megrs

This represents the interaction of an electric dipole with a charge. Notice that this
force is one order weaker (proportional to 1/r%) than that of a single charge (as the
net charge of the present configuration vanishes and thus there is no “monopole”
contribution).

17



7. (a) The function f(x) is odd because sinz is odd. (1]

Fourier series of a function with generic period 2L (book work): [1]

f(z) = %04 i an, cos(n%x) + i by, sin(n%x) :

2 n=1 n=1
where the coefficients of the expansion are given by (book work): [1]
1 +L
@ = 7 /_L cos(n%x)f(:c) dz,
1 [+L
@ = 7 /_L cos(n%x)f(:c) dz.
All the a,’s vanish because f(x) is odd. Hence, replacing L with 7/2 yields [1]

f(z) = i b, sin(2nx) ,

n=1

with
2 /2 2 p+7/2

b, = —/ sin(2nx) f(z)dz = —/ sin(2nz) sin(x) dx .

™ J—7/2 ™ J—7/2

To solve the previous integral, apply the goniometric identity:

cos(a — 3) — cos(a + 3)

sin(a) sin(f) = 5 ;
so that
1 p+7/2
b, = - /_w/z cos((2n — 1)x) — cos((2n + 1)x) dz
1 ([sin((Qn - 1):5)1*“/2 [sin((2n+ 1)93)1*“/2)
- m—1 |, m+1 |,

Note now that sin((2n+ 1)7/2) = (—1)" (and, thus, sin((2n —1)7/2) = (—1)"™): [2]

b (—1)" (_ 2 2 ) (=)™ 8n
"Tooq n—1 2n+1/) 7 1—4n?’
Substituting into the Fourier series: [2]

o) = %g(—w% sin(2nz)

Applying Parseval’s identity to our case:

1 p+n/2 1 +7/2 1
- /_M2 sin?(z) do = o /_M2 1 — cos(2x)dz = 5 5

18



1 11 & 64n? > n? w2
~ 5‘5?2(1—4712)2 - ;(1—4712)2_6_4'

(1]

(b) In general one has (book work): (3]

1 oo |
- — g(k) ™ dk .
o)== [ 3
Substituting g(k) = z\/g [0(k +1) —0(k — 1)] into the RHS of the previous equa-
tion, and using the properties of the delta function, yields [5]

s 1) — 6k — 1)] e dk = — e — =] = sinz = 1
5/—00 [0(k +1) (k= 1)] e _Z{e — ¢ }—Slnx—ll)rgog(;c)7

which proves the requested identity. Note that the limit [ — oo is essential, as
g(x) = sinz holds everywhere only in this limit.
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