
1. (a) Define what is meant by a “conservative vector field”. If the curl of a field F
vanishes, then what can one say about the field F being conservative or not? [3]

The vector fields F 1(x, y, z) and F 2(x, y, z) are defined, in Cartesian coordinates,
by:

F 1(x, y, z) = (2xy − z5)êx + x2êy − (5xz4 + 1)êz ,

F 2(x, y, z) = (2xy − z5)êx + x2êy + (5xz4 + 1)êz .

Is either of these vector fields conservative? Show which one of these field is con-
servative. For this field determine (up to an additive constant) the scalar potential
from which such a field arises. [6]

(b) Stokes’ theorem states that the line integral of a vector field G along a closed
loop C is equal to the flux of the curl ∇×G through the surface enclosed by C:

∮

C
G · dr =

∫

C
(∇×G) · dS ,

where dS points towards the region of space from where an observer would see the
loop integral as anti-clockwise.

Consider the vector field G(x, y, z) given, in Cartesian coordinates, by:

G(x, y, z) = 2yêx − 3xêy + z2êz .

Find the curl ∇×G. Evaluate the line integral
∮

G(x, y, z) · dr around the square
lying in the xy plane (z = 0) and bounded by the lines x = 3, x = 5, y = 1
and y = 3, either directly or by applying Stokes’ theorem (take the line integral
anti-clockwise as seen from the positive z semi-space). [5]

(c) By virtue of the divergence theorem, the outward flux of a vector field G through
any closed surface S is equal to the volume integral of its divergence ∇·G over the
volume V enclosed by the surface:

∫

S
G · dS =

∫

V
∇ ·G dV ,

where dS points outward from the closed surface.

Consider the scalar field in Cartesian coordinates:

H(x, y, z) = x3 + xy2 − z .

QUESTION CONTINUED

1



Express H in cylindrical polar coordinates ρ, θ and z (where ρ2 = x2 + y2 and
θ = arctan(y/x)). Given the expression for the Laplacian in cylindrical polar
coordinates

∇2f =
1

ρ

∂

∂ρ

(

ρ
∂f

∂ρ

)

+
1

ρ2

∂2f

∂θ2
+
∂2f

∂z2
,

determine ∇2H(ρ, θ, z).

Either directly or by applying the divergence theorem, evaluate the outgoing flux
of the gradient ∇H , given by

∫

∇H · dS ,

over the total surface of a cylinder of radius R and height h with its base lying on
the z = 0 plane and centred at the origin. [6]

2. Consider the following second-order linear differential equation

x
d2y

dx2
+ (2 − x)

dy

dx
+ by = 0 , (1)

where b is a constant. By writing equation (1) in the form y′′ + p(x)y′ + q(x)y = 0,
or otherwise, determine where this equation is singular. [2]

Solutions of equation (1) can be written in the form:

y =
∞
∑

n=0

an x
n+k , a0 6= 0.

Show that k = 0 or k = −1. [4]

Derive the recurrence relation

an+1 =
n + k − b

(n+ k + 1)(n + k + 2)
an ·

Demonstrate that the series solutions converge for all values of x. [5]

[2]In the special case of b = m, a positive integer, show that the series with k = 0
terminates at n = m to yield a polynomial solution. [3]

Obtain this solution for the case of b = m = 2 and demonstrate that it satisfies
the differential equation (1). [4]

CONTINUE
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3. If a matrix H is described as Hermitian, what property does it have? Prove that
the eigenvalues of a Hermitian matrix are real. What property must the associated
eigenvectors have? [7]

The matrix A is given by

A =







5 −5 1
−5 11 −5

1 −5 5





 ·

Is A Hermitian? What is its trace? [2]

Verify that λ1 = 16 is an eigenvalue of A and that its associated eigenvector can

be written as v1 =
1√
6







1
−2

1





 ·

Show that λ2 = 4 is also an eigenvalue and obtain the third eigenvalue, λ3. Find
the normalised eigenvectors corresponding to eigenvalues λ2 and λ3. [11]

4. A particle of mass m = 1 is moving on a plane. Its position is represented, in
Cartesian coordinates, by the two-dimensional vector r = xêx + yêy.

The particle is subject to a conservative force field F (r), with potential energy
U(r) given by

U(r) =
2 −

√
2

2
x2 +

1 −
√

2

2
y2 +

1√
2
(x− y)2 .

Write down the general relation between the force F (r) and the potential energy
U(r) and use it to determine the force F (r) acting on the particle. [3]

Find the work done against the force F (r) when the particle moves from the point
(0, 0) to the point (1, 1) along the line x = y. [2]

Write down the particle’s equation of motion and show that it can be written as

r̈ = Ar ,

where A is the 2 × 2 real matrix [4]

A =

(

−2
√

2√
2 −1

)

.

Find the eigenvalues and eigenvectors of A. [5]

Use these eigenvalues and eigenvectors to obtain two uncoupled differential equa-
tions describing the motion. Solve these equations for the initial conditions x =
y = d y

d t
= 0 and d x

d t
=

√
2 at t = 0. Give explicit solutions for the variables x and

y. [6]

TURN OVER
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5. In atomic units the Schrödinger equation for the hydrogen atom can be written as

(

−1

2
∇2 − 1

r

)

ψ = Eψ

where, in spherical polar coordinates:

∇2 =
1

r2

∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
·

By writing
ψ = R(r)Θ(θ)Φ(φ)

show that Φ(φ) must satisfy the equation

d2Φ

dφ2
= −m2Φ .

What are the solutions of this equation? Explain why m, the constant of separa- [4]

tion, must take integer values. [3]

Hence show that R(r) must satisfy the radial equation

1

2

d

dr

(

r2
dR

dr

)

+Rr + ERr2 = λR ,

where λ is another constant of separation. Obtain the corresponding equation for
Θ(θ). [6]

For the special case of λ = 0, show that the radial equation can be written as

1

2

d2U

dr2
+
[

1

r
+ E

]

U = 0

where U(r) = rR(r). Show that for large values of r [3]

U(r) = A exp(αr) +B exp(−αr)

where α = (−2E)
1

2 . How can this solution be simplified for bound states of the
hydrogen atom? [4]

CONTINUED
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6. (a) Any continuous function f(x) in −1 ≤ x ≤ 1 can be expanded in terms of
Legendre polynomials as

f(x) =
∞
∑

n=0

anPn(x) for − 1 ≤ x ≤ +1 .

Given the orthogonality relation

∫ +1

−1

Pm(x)Pn(x) dx = δmn
2

2n+ 1
,

derive a formula for the coefficients an. [5]

Given the first two Legendre polynomials

P0(x) = 1 , P1(x) = x ,

find the first two coefficients a0 and a1 of the expansion of the function α eα|x|,
where α is real. [5]

(b) The electrostatic potential of a charge Q located on the z axis at the point
(0, 0, d) (in Cartesian coordinates; note that d can be either positive or negative),
reads, in spherical polar coordinates:

V (r, θ, φ) =
Q

4πε0r

∞
∑

l=0

(

d

r

)l

Pl(cos θ) .

Add now a second charge −Q on the z axis at point (0, 0,−d). Write down an
expression for the total potential VT created by the charges Q and −Q in spherical
polar coordinates. [4]

Consider a charge q very far from the origin (d≪ r). By approximating the total
potential VT due to charges Q and −Q to the first non-zero term of the expansion in
Legendre polynomials, and using the expression of the gradient in spherical polars
(given below), find the electrostatic force acting on the charge q in this case. [6]

The gradient operator in spherical polar coordinates is

∇ = êr

∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ
.

TURN OVER
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7. (a) Let f(x) be a function of period π defined by

f(x) = sin(x) for − π

2
< x < +

π

2
.

Is f(x) an even or odd function?

Show that the Fourier expansion of f(x) can be written as

f(x) =
∞
∑

n=1

bn sin(2nx)

where the coefficients bn are given by [4]

bn =
2

π

∫ π/2

−π/2

sin(2nx) sin(x) dx .

Determine the coefficients bn and hence show that [5]

f(x) =
1

π

∞
∑

n=1

(−1)n 8n

1 − 4n2
sin(2nx) .

Parseval’s identity for a function f(x) with general period 2L reads

1

2L

∫ +L

−L
[f(x)]2 dx = (a0/2)2 +

1

2

∞
∑

n=1

(a2
n + b2n) .

Apply Parseval’s identity to prove [3]

∞
∑

n=1

n2

(1 − 4n2)2
=
π2

64
.

(b) The function g(x) is defined by

g(x) = sin(x) for − l < x < +l ,

g(x) = 0 for |x| ≥ l ,

where l is real and positive. The Fourier transform g̃(k) of g(x) is defined as

g̃(k) =
1√
2π

∫

+∞

−∞
e−ikxg(x) dx .

Give the general way to obtain the original function g(x) from its Fourier transform
g̃(k) (i.e., to obtain the inverse Fourier transform of g̃(k)). [3]

Prove that, in the limit l → +∞, one has [5]

lim
l→∞

g̃(k) = i

√

π

2
[δ(k + 1) − δ(k − 1)] ,

where δ stands for the Dirac delta function.

END OF PAPER
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PHAS2246: Mathematical Methods III

2008/2009

Model solutions. A more detailed PROVISIONAL marking scheme is given here in
square brackets in the right-hand margin.

1. (a) A vector field F (r) is conservative if and only if there exists a scalar potential
U(r) such that F (r) = −∇U(r) (book work). [1]

If ∇× F = 0 then the field F is conservative (book work). The opposite impli- [2]

cation (F conservative then ∇× F = 0) is also true.

∇× F 1 = (∂yF1z − ∂zF1y)êx + (∂zF1x − ∂xF1z)êy + (∂xF1y − ∂yF1x)êz = 0 ,

∇× F 2 = −10z4êy .

Hence, F 1 is conservative but F 2 is not. [2]

The scalar potential U(x, y, z) such that F 1 = −∇U can be found by integrating
the components of F 1 with respect to the corresponding variables and by comparing
the results obtained:

∂U

∂x
= −(2xy − z5) ⇒ U = −

∫

(2xy − z5) dx+ fx(y, z) = −x2y + xz5 + fx(y, z) ,

∂U

∂y
= −x2 ⇒ U = −

∫

x2 dy + fy(x, z) = −x2y + fy(x, z) ,

∂U

∂z
= (5xz4 + 1) ⇒ U =

∫

(5xz4 + 1) dz + fz(x, y) = xz5 + z + fz(x, y) ,

where the three functions fx, fy and fz have to be determined by consistency. The
only consistent option is fx(y, z) = z, fy(x, z) = xz5 + z and fz(x, y) = −x2y,
yielding [4]

U(x, y, z) = −x2y + xz5 + z .

As can be directly verified, the negative gradient of this potential U is equal to the
field F 1.

(b) Evaluate the curl: [2]

∇×G = (∂yGz − ∂zGy)êx + (∂zGx − ∂xGz)êy + (∂xGy − ∂yGx)êz

= −5êz .

Because of Stokes’ theorem, since the area of the square is 4 and the curl ∇ × G
points towards the negative direction, one has [3]

∮

G(x, y, z) · dr = −5 × 4 = −20 .

(c) In polar coordinates:

x = ρ cos θ , x2 + y2 = ρ2 ⇒ H = x(x2 + y2) − z = ρ3 cos θ − z

[1]
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⇒ ∇2H(ρ, θ, z) = 9ρ cos θ − ρ cos θ = 8ρ cos θ .

[1]

Now, because the Laplacian ∇2H is just the divergence of the gradient ∇H , we
can apply the divergence theorem and evaluate the surface integral by integrating
∇2H(ρ, θ, z) over the volume of the cylinder: [2]

∫

∇H · dS =
∫ h

0

dz
∫ R

0

dρ
∫

2π

0

ρ dθ8ρ cos θ = h
8R3

3

∫

2π

0

cos θ dθ = 0 .

[2]
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2. Look for a solution of the second-order differential equation

x
d2y

dx2
+ (2 − x)

dy

dx
+ by = 0

Gives p(x) = 2−x
x

and q(x) = b
x
. [1]

This means the equation is singular at x = 0 only. [1]

At x = 0, p0 = 2 and q0 = 0, hence the indicial equation is written as

k(k − 1) + 2k = 0

k2 + k = 0

So k = 0 or −1. [3]

y =
∞
∑

n=0

an x
n+k ,

y′ =
∞
∑

n=0

an(n+ k) xn+k−1 ,

y′′ =
∞
∑

n=0

an(n+ k)(n+ k − 1) xn+k−2 .

[2]

Inserting these into the equation, we obtain

∞
∑

n=0

an

[

(n+ k)(n+ k − 1)xn+k−1 + 2(n+ k) xn+k−1 − (n + k) xn+k + bxn+k
]

= 0 ,

which can be grouped as

∞
∑

n=0

an (n + k)(n+ k + 1)xn+k−1 =
∞
∑

n=0

an (n+ k − b) xn+k .

Rearranging the left hand side so that we get the same powers of x everywhere, we
find ∞

∑

n=−1

an+1 (n+ k + 1)(n+ k + 2)xn+k =
∞
∑

n=0

an (n + k − b) xn+k .

[4]

The recurrence relation can be read off directly and gives

an+1

an

=
n + k − b

(n+ k + 1)(n+ k + 2)
·

To check for convergence, we use the d’Alembert ratio test, which requires that

R =

∣

∣

∣

∣

∣

an+1 x
n+1

an xn

∣

∣

∣

∣

∣

< 1

9



in the n→ ∞ limit. From the recurrence relation, we see that

R→ |x|
n

as n→ ∞ .

Clearly, in the limit of large n, we always have R < 1 so that the series converges
for all values of x.
Or state that there are no poles in the complex plane apart from x = 0 so the
solutions converges for all values of x. [2]

For k = 0 and b = m, a positive integer, the recurrence relation becomes

an+1

an
=

n−m

(n + 1)(n+ 2)
·

The right hand side vanishes when n = m so that am+1 = 0. By repeated use of
the recurrence relation, all the subsequent terms are then also zero. (This last bit
is crucial.) [3]

For b = m = 2

a1 =
−2

1 × 2
a0 = −a0

a2 =
1 − 2

2 × 3
a1 =

a0

6

a3 = 0

[2]

y = (
x2

6
− x+ 1)a0

y′ = (
x

3
− 1)a0

y′′ =
1

3
a0

which satisfies the equation. [2]
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3. A Hermitian matrix is one for which A† = (AT )∗ = (A∗)T = A [1]

Consider the eigenvalue equation

HX = λX ,

Take its Hermitian conjugate:

(HX)† = (λX)† ,

X†H† = X†H = λ∗X† . (1)

Multiply eq. (1) from the right by X

X†HX = λ∗X†X . (2)

Go back to first Eq. and multiply it on the left by X†

X†HX = λX†X . (3)

The left hand sides of Eqs. (2) and (3) are identical and so the right hand sides
have to be as well;

(λ∗ − λ)X†X = 0 . (4)

But since all X†X = X 2 are non-zero

λ∗i − λi = 0 , (5)

which means that all the eigenvalues are real (adaptation of bookwork). [4]

Eigenvectors for non-degenerate eigenvalues are orthogonal. [2]

A is real and symmetric and hence Hermitian. [1]

The trace of A is 5+11+5=21. [1]

The characteristic equation is given by

|A− λI| =

∣

∣

∣

∣

∣

∣

∣

5 − λ −5 1
−5 11 − λ −5

1 −5 5 − λ

∣

∣

∣

∣

∣

∣

∣

.

[1]

To verify that λ1 = 16, evaluate

∣

∣

∣

∣

∣

∣

∣

−11 −5 1
−5 −5 −5

1 −5 −11

∣

∣

∣

∣

∣

∣

∣

.

This equals zero since adding row 1 and row 3 gives twice row 2. [1]
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To verify that v1 is the associated eigenvector,

(A−λ1I) v1 =
1√
6







−11 −5 1
−5 −5 −5

1 −5 −11













1
−2
1





 =
1√
6







−11 + 10 + 1
−5 + 10 − 5
1 + 10 − 11





 =







0
0
0





 ,

as required. It is a normalised eigenvector by inspection. [1]

To verify that λ2 = 4, evaluate

∣

∣

∣

∣

∣

∣

∣

1 −5 1
−5 7 −5

1 −5 1

∣

∣

∣

∣

∣

∣

∣

.

This equals zero since the first and third rows are the same. [1]

The sum of the eigenvalues equals the trace of the matrix, so

λ3 = 21 − 16 − 4 = 1

Other methods of demonstrating eigenvalues and eigenvector accept- [1]

able.

For the second eigenvalue,

(A− λ2I) v2 =







1 −5 1
−5 7 −5

1 −5 1













v12

v22

v32





 =







0
0
0





 ,

so that v12 = −v32, hence v22 = 0. The normalised eigenvector is therefore (to [2]

within a phase).

v2 =
1√
2







1
0
−1





 ·

[1]

Similarly for the third eigenvalue,

(A− λ3I) v3 =







4 −5 1
−5 10 −5

1 −5 4













v12

v22

v32





 =







0
0
0





 ,

so that v12 = v32 and hence v22 = v12 = v32. The normalised eigenvector is therefore [2]

(to within a phase).

v2 =
1√
3







1
1
1





 ·

[1]
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4. Relation between force F and potential U (book work): [1]

F (r) = −∇U(r)

⇒ F (r) = −(2x−
√

2y)êx − (y −
√

2x)êy .

The force field is conservative (admits a potential U). The work W done against [2]

the force is just given by the difference in the potential at the initial and final point:
[2]

W = U(1, 1) − U(0, 0) =
3

2
−

√
2 − 0 =

3

2
−

√
2 .

Newton’s equation of motion: [2]

F (r) = mr̈ = r̈ ⇒ r̈ = −(2x−
√

2y)êx − (y −
√

2x)êy ,

which can be written in terms of components and matrices as: [2]

r̈ =

(

ẍ
ÿ

)

=

(

−2x+
√

2y

−y +
√

2x

)

=

(

−2
√

2√
2 −1

)(

x
y

)

= Ar .

Characteristic equation of A: [2]

λ2 + 3λ = 0

⇒ eigenvalues are 0 and −3. [1]

Eigenvector related to 0:

(

−2
√

2√
2 −1

)(

a
1

)

=

(

0
0

)

⇒ a =
1√
2
.

Up to normalisation, the eigenvector r0 corresponding to the eigenvalue 0 is [1]

r0 =

(

1√
2

1

)

.

Eigenvector related to −3:

(

−2
√

2√
2 −1

)(

a
1

)

=

(

−3a
−3

)

⇒ a = −
√

2 .

Up to normalisation, the eigenvector r−3 corresponding to the eigenvalue −3 is [1]

r−3 =

(

−
√

2
1

)

.

In the new variables x̃ = x/
√

2+y and ỹ = −
√

2x+y, dictated by the eigenvectors
above, the second-order differential equations of motion decouple as [2]
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¨̃x = 0 ,
¨̃y = −3ỹ , (6)

with general solutions [1]

x̃ = At+B ,

ỹ = C sin(
√

3t) +D cos(
√

3t) . (7)

The requested initial conditions read, in terms of the new variables:

x̃(0) = ỹ(0) = 0 , ˙̃x = 1 , ˙̃y = −2 ,

which imply

B = 0 , D = 0 , A = 1 , C = − 2√
3
, .

The requested solutions are thus [1]

x̃ = t ,

ỹ = − 2√
3

sin(
√

3t) ,

which can be expressed in terms of the original variables x and y by noting that: [1]

x =

√
2

3
(x̃− ỹ) ,

y =

√
2

3
(
√

2x̃+
1√
2
ỹ) .

Finally: [1]

x =

√
2

3
(t+

2√
3

sin(
√

3t)) ,

y =
2

3
(t− 1√

3
sin(

√
3t)) .
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5. (This question is similar to material covered in the lectures where they
did separation of variables for Laplace’s equation)

ψ(r, θ, φ) = R(r) × Θ(θ) × Φ(φ) .

Θ Φ
1

2r2

d

dr

(

r2 dR

dr

)

+RΦ
1

2r2 sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+RΘ
1

2r2 sin2 θ

(

d2Φ

dφ2

)

+(
1

r
+E)RΘ Φ = 0.

Divide by RΘ Φ and multiply by 2r2 sin2 θ [2]

sin2 θ

R

d

dr

(

r2 dR

dr

)

+
1

Θ
sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ 2r sin2 θ(1 + Er) +
1

Φ

(

d2Φ

dφ2

)

= 0 .

First 3 terms here depend upon r and θ but last is a function purely of φ. Since r, [1]

θ and φ are independent variables, the third term must be some constant, denoted
by −m2. [1]

d2Φ

dφ2
= −m2 Φ ,

which has solutions e±imφ or, alternatively, cosmφ and sinmφ. When φ increases
by 2π, the solution returns to the same point; expect same physical solution. Thus
Φ(φ + 2π) = Φ(φ). Can only be accomplished if m is a real integer. Then Φ(φ) is
clearly a periodic function. [3]

The remainder of the equation can be manipulated (divide by 2 sin2 θ and rear-
range) into

1

2R

d

dr

(

r2 dR

dr

)

+ r(1 + Er) =
1

2

[

m2

sin2 θ
− 1

Θ

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)]

.

Left hand side is function only of r, while right hand side depends only on θ. [2]

Means that both sides must be equal to some constant, denote by λ. Results in [2]
two ordinary DEs:

1

2

d

dr

(

r2 dR

dr

)

+ r(1 + Er)R = λR ,

d

dθ

(

sin θ
dΘ

dθ

)

+

(

2λ sin θ − m2

sin θ

)

Θ = 0 .

[2]

Let U = rR and λ = 0.
R′ = −r−2U + r−1U ′

[1]

r2R′ = −U + rU ′

d

dr

(

r2 dR

dr

)

= −U ′ + U ′ + rU ′′
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[1]

rU ′′ + 2U + 2ErU = 0

gives [1]

1

2

d2U

dr2
+
[

1

r
+ E

]

U = 0

For large r, 1

r
tends to zero so

U ′′ = −2EU

which has solution for α = (−2E)
1

2 [1]

U(r) = A exp(αr) +B exp(−αr).

For bound states this solution must be normalisable, however exp(αr) is infinite [1]

at r = ∞ so cannot be normalised, therefore A = 0. [2]
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6. (a) Multiplying the expansion of f(x) in terms of Fourier polynomials by Pm(x)
and integrating over x yields [2]

∫

+1

−1

Pm(x)f(x) dx =
∞
∑

n=0

an

∫

+1

−1

Pm(x)Pn(x) dx .

Substituting the orthogonality relation into the RHS of the previous equation gives:
[2]

∫

+1

−1

Pm(x)f(x) dx =
∞
∑

n=0

anδmn
2

2n+ 1
= am

2

2m+ 1
.

Now, rearranging terms and renaming the label gives the general formula for the
coefficients an (book work) [1]

an =
2n+ 1

2

∫

+1

−1

Pn(x)f(x) dx .

Notice that α eα|x| is even. Applying the formula above, splitting the integration
domain and noting that Pn(x) is even or odd for even or odd n, one has: [2]

a0 =
1

2

∫ +1

−1

α eα|x| dx =
∫ +1

0

α eαx dx = [eαx]1
0

= eα − 1 .

a1 = 0 because P1(x)α eα|x| is odd. [3]

(b) If the second charge is added, the total potential is: [4]

VT (r, θ, φ) =
Q

4πε0r





∞
∑

l=0

(

d

r

)l

Pl(cos θ) −
∞
∑

l=0

(

−d
r

)l

Pl(cos θ)





=
Q

4πε0r

∞
∑

l=0

(

d

r

)l

Pl(cos θ) +
∞
∑

l=0

(−1)l+1

(

d

r

)l

Pl(cos θ)

=
2Q

4πε0r

∞
∑

l odd

(

d

r

)l

Pl(cos θ)

(the even terms in the two expansions cancel each other out). Hence, l = 1 is
the first non-vanishing term (“dipole” term) and, for d ≪ r, the potential can be
approximated as [2]

VT (r, θ, φ) ≃ Q

2πε0r

d

r
P1(cos θ) =

Qd

2πε0r2
cos θ

The resulting electrostatic force is thus given by [4]

F = −q∇VT =
Qqd

2πε0

(

−∂r
cos θ

r2
êr −

1

r
∂θ

cos θ

r2
êθ

)

=
Qqd

2πε0r3
(2 cos θ êr + sin θ êθ) .

This represents the interaction of an electric dipole with a charge. Notice that this
force is one order weaker (proportional to 1/r3) than that of a single charge (as the
net charge of the present configuration vanishes and thus there is no “monopole”
contribution).
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7. (a) The function f(x) is odd because sin x is odd. [1]

Fourier series of a function with generic period 2L (book work): [1]

f(x) =
a0

2
+

∞
∑

n=1

an cos(n
π

L
x) +

∞
∑

n=1

bn sin(n
π

L
x) ,

where the coefficients of the expansion are given by (book work): [1]

an =
1

L

∫

+L

−L
cos(n

π

L
x)f(x) dx ,

an =
1

L

∫

+L

−L
cos(n

π

L
x)f(x) dx .

All the an’s vanish because f(x) is odd. Hence, replacing L with π/2 yields [1]

f(x) =
∞
∑

n=1

bn sin(2nx) ,

with

bn =
2

π

∫ +π/2

−π/2

sin(2nx)f(x) dx =
2

π

∫ +π/2

−π/2

sin(2nx) sin(x) dx .

To solve the previous integral, apply the goniometric identity:

sin(α) sin(β) =
cos(α− β) − cos(α+ β)

2
,

so that

bn =
1

π

∫ +π/2

−π/2

cos((2n− 1)x) − cos((2n+ 1)x) dx

=
1

π





[

sin((2n− 1)x)

2n− 1

]+π/2

−π/2

−
[

sin((2n + 1)x)

2n+ 1

]+π/2

−π/2



 .

Note now that sin((2n+1)π/2) = (−1)n (and, thus, sin((2n− 1)π/2) = (−1)n+1): [2]

bn =
(−1)n

π

(

− 2

2n− 1
− 2

2n+ 1

)

=
(−1)n

π

8n

1 − 4n2
.

Substituting into the Fourier series: [2]

[1]

f(x) =
1

π

∞
∑

n=1

(−1)n 8n

1 − 4n2
sin(2nx) .

Applying Parseval’s identity to our case:

1

π

∫ +π/2

−π/2

sin2(x) dx =
1

2π

∫ +π/2

−π/2

1 − cos(2x) dx =
1

2
− 0 =

1

2

18



[2]

⇒ 1

2
=

1

2

1

π2

∞
∑

n=1

64n2

(1 − 4n2)2
⇒

∞
∑

n=1

n2

(1 − 4n2)2
=
π2

64
.

[1]

(b) In general one has (book work): [3]

g(x) =
1√
2π

∫

+∞

−∞
g̃(k) eikx dk .

Substituting g̃(k) = i
√

π
2

[δ(k + 1) − δ(k − 1)] into the RHS of the previous equa-

tion, and using the properties of the delta function, yields [5]

i

2

∫ +∞

−∞
[δ(k + 1) − δ(k − 1)] eikx dk =

1

2i

[

eix − e−ix
]

= sin x = lim
l→∞

g(x) ,

which proves the requested identity. Note that the limit l → ∞ is essential, as
g(x) = sin x holds everywhere only in this limit.
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