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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

1. The following linear program P is in standard form.

Maximise T1 + 324
subject to 2z; + 25 — 73
zy-+ 2.’1?2 + 2.’173

—T, + 29+ 3

T1,T9,T3
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Bring it to equality form and solve it by the simplex algorithm. Identify the basic
feasible solution after each pivot step.

Assume the last inequality is changed to —z, + 23 + 23 < 1 + ¢t where ¢ is a small
number. What is the new optimal value of P?

2. Let z,c be vectors in R®, A an m x n matrix and b a vector in R™. Let P be the
linear program:
Maximise ¢’z
subject to Az < b
r =2 0
Show that the feasible set of P is convex.
Write down dual of P. What is Complementary Slackness?
State and prove the Weak Duality Theorem for P and its dual.

State the Strong Duality Theorem for P and its dual.

3. Explain what is meant by a two-person zero-sum game with payoff matrix A.

Give the definition of pure strategy, randomised strategy, equilibrium, and saddle
point.

Show that if a game has a saddle point then there is an equilibrium consisting of
pure strategies.

Find the equilibrium for the game with payoff matrix

2 01
1 3 2
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4. Prove that in a network with capacities, there is a cut whose value is equal to that

of the maximum flow.

Find a maximum flow in the following network.
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Explain why the Ford-Fulkerson algorithm always terminates in finitely many steps
in a network with integer capacities.

5. Formulate the transportation problem.

Write down the dual of the transportation problem.

Explain how to check whether a particular transportation arrangement is optimal.

Find the optimal transportation for the array

D, D, D3
S 3 2 6 7
S, 5 4 4 8
S3 2 5 7 9
10 11 3 24

6. State and prove the Lagrangian sufficiency theorem.

Let f and g be function given by

flz,y,2) =
9(z,y,2) =

3r+2y—=z
2+y%2+(2-5)2-18

Show that f has a maximum and a minimum value on the set of points (z,y, 2) in
R® which satisfy g(z,y,2) = 0. Use a Lagrangian multiplier to find the maximum
and the minimum values and the points at which they are attained.
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