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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

1. Let g be a finite dimensional Lie algebra over F. Define the Killing form (g of g,
and prove that for all X,Y,Z € g,

Be(X,[Y, Z])) = (Y, [Z, X))

Show that if a < g then a' < g where a' = {B e g:VA € a, 3,(4, B) =0}.
If g is simple deduce that either (i) B¢ is nondegenerate or (ii) Gz = 0.

Prove that sl3(F) is simple.

2. The following elements X, Y, Z form an F-basis for the Lie algebra O(3,F) ;

010 0 00 0 01
X={-100];Y=1{0 01]);Z= 0 00 }.
0 00 0 -1 0 -1 00
Write down the relations which hold between X, Y, Z under Lie bracket, and hence
compute the Killing form of O(3,F) in the coordinate system of {X,Y, Z}.
If o : OB,F) = glg(V) is a representation of O(3,F), write down the Casimir
operator C,, of ¢ and show by direct computation that

Cop(X) = p(X)C,.

Deduce that C,¢(&) = ¢(€)C,, for all £ € O(3,F).

3. For any nonnegative half integer j define the spin j representation (5) of sly(F), and
show how to interpret the adjoint representation of sl (FF) as a spin representation.

Prove that 1 1 1
(j)®(§) = (j—§)€9(j+§)-

Hence derive a corresponding decomposition formula for (5) ® (1) , stating clearly
any uniqueness statement about sly(F) that you use.
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4. Let g be a finite dimensional nondegenerate Lie algebra over F and let (V, ) be a
finite dimensional representation of g.

Explain what is meant by a 1-cocycle of g with values in (V, <p), and explain also
what is meant by saying that such a 1l-cocycle is trivial.

Furthermore, if (V, @) is simple and the Casimir operator C,, of (V, ¢) is nonzero,
show that any 1-cocycle of g with values in (V] ¢) is trivial.

Explain what is meant by the Whitehead property for g.

Let g have the Whitehead property; given a short exact sequence of g-representations

over FF
0— (Ur,an) = (W,9) = (Uz,a3) = 0

show that (W,¢) =2 (Uy,a1) @ (U, az).

5. Let g be a Lie algebra of finite dimension over C. Explain the distinction between
the following sorts of representation of g ;

(1) (C,C) -representation ; (ii) (R, C) -representation ; (iii) (R, R) -representation.

Also describe a 1-1 correspondence
{(R, C)—representations of g} < {(C, C)—representations of g ® g}.

Describe by means of bispinors the classification of

(i) simple (R, C)-representations of sly(C) , and
(ii) simple (R, R)-representations of sly(C).

Viewed as (R,R)-representations of sl;(C) the Majorana representation M and
vector representation V are described by

M=(G080,3) i V=7

By using the bispinor Clebsch-Gordan Theorem calculate the bispinor decomposi-
tions of both M ®V and VQV .

MATHC397 END OF PAPER



