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All questions may be attempted but only marks obtained on the best four solutions will
count.

The use of an electronic calculator is not permitted in this ezamination.

1. Let ® : R®* — R be defined by

oo ifz=0

@(x):{ “%” ifz#0

Find the distributional Laplacian of ®.

Show that the indicator function u of the set {(z,y) € R? : z > y} is a solution of
the equation
Ou + ou
or 0Oy

where the derivatives are in the sense of distributions.

0,

2. Define the notion of superharmonic and subharmonic functions.

Let Q be an open subset of R”. Suppose that u : @ — (—o00,00] is lower semi-
continuous and has the property that for every x € Q there is r, > 0 such that for
every 0 < r < 71y,

u(z) > ]é o U )

Show that u is superharmonic in 2.

Show that the function ® from Question 1 is superharmonic on R3.

3. Let Q be a bounded domain in R™ and let g € C(9f2). Describe Perron’s definition
of a generalized solution of the Dirichlet problem

Ay = 0 in £
u = g on 00"’
stating without proof all results required for the definition.
Prove Wiener’s theorem on the coincidence of upper and lower Perron’s solutions.

Find a continuous function g defined on the boundary of @ = {z € R?: 0 < ||z|| < 1}
for which the Dirichlet problem has no classical solution and find Perron’s solution
of this problem.
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4. State and prove the Lax-Milgram theorem.

Let L be an elliptic second order partial differential operator in divergence form.
Explain the notion of weak solution of the boundary value problem

Lu = f in Q
u = 0 on 0N

and give, with reasons, conditions under which the Lax-Milgram theorem may be
used to show the existence of a solution.

5. State and prove Morrey’s inequality.

Explain how Morrey’s inequality together with the Gagliardo-Nirenberg-Sobolev
inequality (which should be stated) may be used to show the interior regularity of
solutions of elliptic partial differential equations.
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