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All questions may be attempted but only marks obtained on the best four solutions will

count.
The use of an electronic calculator is not permitted in this examination.

1. If f(m,n) = am?® + 2bmn + cn? is a positive definite quadratic form with a > 0,
ac—b? = 1, show that there are integers m/, n’, not both 0, such that f(m/,n’) < %

You may assume that any unit lattice in E? has two points whose distance apart is
/2

at most 7

Show, by giving an example, that this result is best possible.

Given € > 0, find an example of f(m,n), as above, for which there are integers m, n,
not both 0, such that f(m,n) <e.

2. State and prove Minkowski’s Theorem.

Let p be a prime of the form 4m + 1 where m is an integer. For such a prime, there
is an integer k, 0 < k < p, such that k2 = —~1 (mod p). Using this result, without
proving it, and considering the lattice generated by (1, k), (1,k + p), or otherwise,
show that p can be expressed as the sum of the squares of two non-negative integers.

3. Let C be a convex body in the Euclidean plane and, for n > 3, let p, be an n-gon
of maximum area inscribed in C. Show that

n 21
A n) = Area(C) - — sin —.
rea(pn) rea(C) 5, Sin—
If the function f is convex on [a, b], state Jensen’s inequality for f.

Show that no n-gon circumscribing the disk z2 + 2 = 72 has a smaller area than
the regular n-gon circumscribing this disk.
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4. What is

(i) an affine transformation from E? to E2,

(ii) an affinely reqular hexagon?
If 0,.(C) is the density of the thinnest lattice covering of E? by the convex body C,
show that 0,(C) < %
Show further that, if 6,(C) = 2, then C is a triangle.

You may assume without proof that C has an inscribed affinely regular hexagon.

5. Let D(r) > 0 be a density function which is continuous on [0, 7], 7o > 1 and zero
for r > ro and suppose that, for any packing {B¢ + ¢;,i = 1,2, .. .} of unit balls,
where B? is the ball of radius 1 centred at the origin, and for any x € E¢,

oo

> D(x-ci) < 1.

i=1

Show that the density, 6(B?), of the densest packing of unit balls in E¢ satisfies

1
4 <
B < Jy’ 1D (r)dr’

For any points x, ¢y, ..., ¢, in E%, Blichfeldt’s inequality is

n n n
ZZ lc; — cjl2 < QnZ Ix — ci|2.
i=1

i=1 j=1

Assuming this, show that

MATHC365 END OF PAPER



