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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

NOTE: In the questions which follow the current price of an asset (or similar instrument)
will often be denoted either by S; or simply by S with the time subscript suppressed.
Reference is made to the following definitions:

(z)* = max{z, 0},

o= {5}

1 z°
a) = = e {5},
5 = In(S/K) + (r + 30°)t
1= -
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where K denotes the exercise price, r the riskless rate, o the volatility and t is the time
to expiry.

The Black-Scholes formula for pricing a European call is:

da

C = SN(dl) - Ke_TtN(dz).

1. (a) Explain how covered interest-rate arbitrage can be used to value a forward F(T')
to time T on a foreign exchange rate S. Write a formula for the value of this forward
using continuously-compounded interest rates.

(b) In the context of a one-period multi-state model of asset prices define what is
meant by arbitrage opportunity and risk-neutral measure. State and prove the No-
Arbitrage Theorem. You may assume the Separating Hyperplane Theorem but this
must be stated carefully.

(c) Explain the benefits to a trader of using risk-neutrality over expectation-based
pricing.
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2. Consider the following model, with r = 0:

w [SO ]SO [S@ ]
wy || 10 14 18
wp || 10 14 12
wsz || 10 8 12
W4 10 8 4

(a) Replicate the call option X = (S(2) — 7)* over the two periods and so find the
fair price of the claim.

(b) Find all the one period risk-neutral probabilities and the corresponding proba-
bility on Q = {w;,ws,ws,ws}. Confirm that Eq[X] is the fair price.

(c) For the same model, find the value of the following so-called Asian option
1
A= [§{S(0) +S(1)+S5(2)} -7 .

(d) In the T-period binomial model, if the asset price is S at any time, the next
period’s price will be either SU or SD. The interest rate per period r is positive
and D* < 1 < U*, where the star denotes discounting.

(i) Describe the risk-neutral measure Q.

(ii) A digital option pays one dollar at time ¢t = T if the asset price is above a fixed
level K and is worthless otherwise. Using Q show that the option value at time

t =0 is equal to
1 T T
T ()05
n2n

for some 7+ which you must find.
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3. (a) Let Q be a finite set, and let P be a probability measure on 2. Define what
is meant by a filtration P,:t=0,...,T on . When is a process S(t) said to be
adapted to the filtration, and when is it a martingale? When is a process H(t)
previsible with respect to a filtration?

(b) Give a brief explanation of the idea behind dynamic programming as applied
to the valuation of an American option. Use the method to value an American call
option with exercise price K = 7 dollars written on an asset where the asset prices
in dollars are given below, the interest rate per period is zero, and a dividend of two
dollars is paid between time 1 and expiry.

[ [50,9) [50w) [SEw) ]
w1 10 14 16
Wa 10 14 10
w3 10 8 10
Wy 10 8 2

(c) Construct a hedging strategy for the American option.
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4. (a) Let f(S,t) be a function of two variables (continuously twice differentiable in
S and once in t). State It6’s Formula for df(S(t),t), where S(t) is an asset price
obeying the stochastic equation

dS = pdt + odW

in which W = W (t) is standard Brownian motion and y, o are continuous functions
of S and t. Give a plausability argument in support of the formula.

(b) What form does It6’s Formula take when the function f is independent of time?
Using this formula, explain how we can obtain a relationship between the stochastic
integral and a standard integral.

(c) Find an expression for

T
/ W (8)dW (2)
0 .

(d) Now assume that S is a model for stock prices obeying the stochastic equation

dS = uSdt + cSdW

What are the mean and variance of the risk-neutral probability of S given its value
S(t) at time t?
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5. (a) Let V(S,t) denote the value at time ¢ < T of a European option when the price
of the underlying asset is S. Assume that the asset price process S(t) follows the
stochastic equation

dS = pSdt + o SdW

where W = W (t) is a standard Brownian motion, yu,o are constants and r is a
constant riskless interest rate applicable throughout the life of the option.

Use Ito’s Formula to derive the Black-Scholes equation satisfied by the function
V(S,t), namely

ov AV 1, 0%V
§+r565+2085§

(b) [Refer to the formulae at the start of the exam paper]

=rV.

Show that d2 = d? — 2log(Se™/K). Hence, or otherwise, show that the delta of
a European call option is

aC
35 = N(dy).

What does the buyer of a European call option need to do today to hedge-the
exposure to the underlying stock?
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