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All questions may be attempted but only marks obtained on the best four  solutions will 
count. 
The use of an electronic calculator is not  permitted in this examination. 

NOTE: In the questions which follow the current price of an asset (or similar instrument) 
will often be denoted either by S, or simply by S with the time subscript suppressed. 
Reference is made to the following definitions: 

(x) + : max{x ,  0},  

1 f u z 2 
(I)(u) -- ~ J-/o exp{--~-} dz, 

d 1 = 

i a 2 ) (  T _ t)  ln(S/K) + (r + 

d 2 = 
c~vzT - 

The Black-Scholes formula for pricing a European call is: 

t 

In(S/K) + (r - ½a2)(T- t) 

S ~ ( d l ) -  Ke-r(T-t)~(dJ. 

. (a) In the context of a one-period multi-state model of asset prices define what is 
meant by 'arbitrage opportunity' and 'risk neutrM measure'. State and prove the 
No-Arbitrage Theorem. 

(b) A certain bank offers a deposit scheme with maturity at t ime t = T whereby for 
each pound deposited (at time t = 0) the bank either returns the money (without 
interest) or else pays an amount ~I(T)/I(O) pounds, where I(t) denotes a specified 
market indicator value at the times t = 0 and t = T ,  and a < 1. Show that this 
contract is equivalent to the bank offering its depositors a number of units of a call 
option on the market indicator struck at k times I(0) with k = 1/o~, and charging 
them for it by not paying interest on the deposit. 

Assume now that I(0) = 1. Show how to select a so that the contract is fairly 
priced using a two-state one-period model in which I(1) is either equal to IH or In. 
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2. R e f e r  t o  t h e  s t a r t  o f  t h i s  e x a m i n a t i o n  p a p e r  for  n o t a t i o n .  

(a) Assuming a zero interest r a t e  and using the  following model  for the price of a 
risky asset at t imes t = 0 and t = 1 

wi 5 9 17 
w2 5 9 5 

w3 5 3 5 
~4 5 3 2 

find the t ime t = 0 fair price of the  put option (4 - S(2)) +. 

(b) In the T-per iod  binomial mode l  of asset dynamics for a single asset, if the 
asset price is S at any time, the  next  period's price will be either S U  or S D .  The 
initial price of the asset is un i ty  and  the interest rate per per iod R is positive and 
D* < 1 < U*, where the star denotes  discounting. Describe the  risk-neutral  measure 
Q. 

A cash-or-nothing option wr i t t en  on the asset jus t  described pays one dollar at t ime 
t = T when tha t  asset price is at  or above a fixed level K and  is worthless otherwise. 
Using Q, show tha t  the option value at time t = 0 is equal to 

1 

(1 + q q2-  

for some ~ (which you may need to identify). 

Show that  if 1 + R = e T/'t and U = e ~v~ ,  D = e -~h-~ where  r and a are positive 
constants and At  is a positive variable,  then 

l im(l_2q)/v/~-~=_(r 1 ) 
A t - + 0  - -  ~ O  . 

Explain briefly the connection between this l imit ing formula and the value O(d2). 
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. Define wha t  is meant  by 

(a) a partition Pt of a finite sample space ~t ('set of states ' )  corresponding to a t ime 
t=O,l,.. . ,T, 

(b) a filtration {Pt: t = 0, . . . ,T}. 

When is a process St said to be adapted to the f i l trat ion,  and when is it a martingale 
with respect to a measure  P on ~? When  is a process Ht predictable with respect 
to a fi l tration? W h a t  is an arbitrage opportunity for a price process {Sn(t) : n = 
0, 1, . . .N} adap ted  to the  filtration. 

Show tha t  there  is no such arbitrage oppor tuni ty  if and only if all the  one period 
submodels have no arbi t rage  oppportunities.  (You may refer to the mult i -per iod 
and one-period No Arb i t rage  theorems.) 

Use the dynamica l  p rogramming  me thod  to value  an American call option with 
exercise price K = 5 wr i t t en  on an asset where the  asset prices in dollars are given 
below, the interest  ra te  per  period is zero, and a d iv idend of one dollar is payable 
at t ime t = 1.5. 

wl 6 9 9 
w2 6 9 6 
coa 6 5 6 

w4 6 5 3 

How should the  option be hedged if it were to be sold at t ime 0 ? 
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4. Let f(S, t) be a funct ion of two variables (continuously twice differentiable in S aad  
once in t). State It6's Formula for dr(St, t), where St is an asset price obeying the  
stochastic equat ion 

dSt = adt + bdzt, 
in which zt is s tandard  Brownian motion and a, b are continuous functions of S and 
t. Give a plausibility argument  in support  of the formula. 

Use the formula to show that  

irz2(t)dz(t) = 3(z(T)3 - 2:(0) 3) - -  foT2:(t)dt. 

What is the mean and variance of the risk-neutral probability of the  asset price ST 
given its price St at  t ime t when a = #S  and b = aS  with #, a constant? 

A 'power option'  on the asset with price St as just  described, has a strike price K and  
matures at t ime T, at which t ime it pays S:; 2 to the holder if and only if ST ) K bu t  
is worthless otherwise. Find the option value at time t = 0 using the r isk-neutral  
probability density. You should present your answer in terms of the cumulat ive  
normal distr ibution function @(u) defined at the start of this examinat ion paper.  
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5. (a) Let V(S, t) denote the value at time t ~< T of a European option when the price 
of the underlying asset is S. Assume that  the asset price process St follows the 
stochastic equation 

dSt = #Stdt + o'Stdzt, 

where zt is a standard Brownian motion, #, a are constants and r is a constant 
riskless interest rate applicable throughout the life of the option. Assume further 
that the asset pays a dividend continuously at rate q of value qStAt  in a period of 
length At. 

Use ItS's Formula to derive the Black-Scholes equation satisfied by the function 
V(S, t), namely 

1 _2,.2 02V OV OV 

(b) Show that  the time independent solutions of the equation in part (a) take the 
form A S  s + B S  -~ for constants A, B for suitably chosen positive a and fl which 
you should specify. 

(c) A perpetual barrier option with a fixed rebate-rate k pays k Jr at the first t ime 
that  the asset value St falls to exactly k Jr where .It is the maximum value of the 
asset price up to time t. Assume the option value is time-independent and takes 
the form V(St, .It). Find this value using part (b) by writing V ( S , J )  = J W ( S / J ) ,  
where W(x)  is a function of one variable. You should assume that  

OV 
~ (S, S) = 0  

(i.e. the option value is insensitive to small changes in the current maximum as that  
is unlikely to remain the maximum later). You may find it useful to verify that  
W(k) = k and W ( 1 ) =  W'(1). 
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