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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this ezamination.

NOTE: In the questions which follow the current price of an asset (or similar instrument)
will often be denoted either by S; or simply by S with the time subscript suppressed.
Reference is made to the following definitions:

(€)" = max{z, 0},

u 22
D) = 7% | ewt-3res
_ In(S/K) + (r + %JQ)(T — 1)

dl oVl —t
g, — In(S/K) + (r — 30?)(T — t).

oV —t

The Black-Scholes formula for pricing a European call is:

S5®(d;) — Ke"T=Yd(dy).

1. (a) In the context of a one-period multi-state model of asset prices define what is
meant by ‘arbitrage opportunity’ and ‘risk neutral measure’. State and prove the
No-Arbitrage Theorem.

(b) The price of an asset is initially unity, i.e. S (0) = 1. The price at time 1 may
be one of three values u, v, w, where 0 < u < v < w. Write down all the risk neutral
measures when the interest rate r satisfies v < 1 +r < v and when it satisfies
v <1+ 7 < w. What happens when 1 +r > w?

(c) A certain car insurance, which pays any level of claim in full, is sold for £500.
An alternative policy is sold for £40 less with the restriction that the client meets
the first £200 of any claim.

(i) Examine this market for arbitrage opportunities when modelling the sample
space of claims with two states: no claim and a single possible claim at £5000.

(ii) What happens if the sample space is extended to contain a further possible
claim of £2000.
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2. (a) Assuming a zero interest rate and using the following model for the price of a
risky asset at times ¢t =0 and ¢t =1

w S0,w) SLw) S2,w)
w, 6 9 10

Wo 6 9 7

w3 6 5 7

Wy 6 5 4

find the value of the following look-back option

X(w) = max{S(t,w) —8:t=0,1,2}.

(b) In the T-period binomial model of asset dynamics for a single asset, if the asset
price is S at any time, the next period’s price will be either SU or SD. The initial
price of the asset is unity, the interest rate per period r is positive and D* < 1 < U*,
(where the star denotes discounting). Describe the risk-neutral measure Q.

(i) Using @ find the value P of a European put written on the asset and having
strike price K.

(ii) Recall that the value of a European call with strike price K either is zero or, for
some m (which you may need to identify) is equal to

c- Z ()ra-om- fj ()ra-am

n=m n=m

where ¢ = B2 §=qU/(1 + ).

Using your formula for P from (i), verify the parity relation

P-C=K"-1
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3. Define what is meant by

(a) a partition P, of a finite sample space 2 (‘set of states’) corresponding to a time
t=0,1,..,7T,

(b) a filtration {P,:t=0,...,T}.

When is a process S; said to be adapted to the filtration, and when is it a martingale
with respect to a measure P on 7

If it is known for each ¢ with 0 < ¢ < T that Ep[S,(t + 1)|P] = Sa(t), deduce that
Ep[Su(t + u)|P;] = S,(t) for each t > 0 and each u > 0 with ¢t + u < T.

Briefly explain the idea behind dynamical programming as applied to the valuation
of an American option. Use the method to value an American call option with
exercise price K = 5 written on an asset where the asset prices in dollars are given
below, the interest rate per period is zero, and a dividend of one dollar is payable

at time ¢t = 1.5.
w S0,w) S1,w) S(2,w)
wh 5 8 9
Wa b 8 6
W3 5 4 6
Uy 5 4 2

Show that it is sometimes optimal to exercise at time ¢ = 1.

How should the option be hedged if it were to be sold at time 0.
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4. Let f(S,t) be a function of two variables (continuously twice differentiable in .S and
once in t). State Ité’s Formula for df(S;,t), where S, is an asset price obeying the
stochastic equation

dS; = adt + bdz,

in which 2; is standard Brownian motion and a, b are continuous functions of S and
t. Give a plausibility argument in support of the formula.

Use the formula to show that
T
1 1
/0 zdz = §(z% —23) — §T.

What are the mean and variance of the risk-neutral probability of the asset price
St at time T when a = uS and b = 0§ with u, o constant?

Use this probability to evaluate the fair price at time ¢t < 7" of a put option on the
asset with exercise price K and maturing at time T, by expressing the conditional
expectation E;[(K — Sr)*] suitably discounted in terms of the cumulative normal
distribution function ®(u) defined at the start of this examination paper.

5. (a) Let V(S,t) denote the value at time ¢ < 7 of a European option when the price
of the underlying asset is S. Assume that the asset price process S; follows the
stochastic equation

dS; = uS;dt + 0S;dz,

where 2, is a standard Brownian motion, yx,c are constants and 7 is a constant
riskless interest rate applicable throughout the life of the option. Assume further
that the asset pays a dividend continuously at rate q of value ¢S;At in a period of
length At.

Use Itd’s Formula to derive the Black-Scholes equation satisfied by the function
V(S,t), namely

1 5, ,0%V ov. oV

z i —)S—+ — =1rV.

27 e T 0Gg g =T

(b) Show that the time independent solutions of the equation in part (a) take the
form AS* + BS™# with A, B constant, for some appropriate positive o and [ which
you should specify.

Use this result to deduce that when ¢ > 0 a perpetual dollar-or-nothing option with
exercise price K has value (S/K)* for S < K.
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