UNIVERSITY COLLEGE LONDON

University of London

.

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc. M.Sci.

3 9 7

Mathematics M234: Electricity and Magnetism

COURSE CODE	: MATHM234
	: 0.50
DATE	: 05-MAY-05
ТІМЕ	: 14.30
TIME ALLOWED	: 2 Hours

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Consider the non-relativistic motion of a particle of mass m and charge q in an electric field $\mathbf{E} = (E, 0, 0)$ and magnetic flux density $\mathbf{B} = (0, B, 0)$, where E and B are constants. The particle starts at rest at the origin at time t = 0.
 - (a) State the equation of motion, and show that the particle's path remains in a plane which should be identified.
 - (b) Solve the equation of motion for the particle's velocity as a function of time.
 - (c) Show that there is a time T > 0 at which the particle is again at rest, and find the value of the smallest such time.
- 2. (a) State and prove Coulomb's law in a vacuum for the electrostatic force between two charged point particles.
 - (b) Using Cartesian coordinates (x, y, z), suppose that $x \ge 0$, $y \ge 0$ is vacuum and the rest of space is occupied by a grounded conductor. In the electostatic limit, what are the boundary conditions on the surface of the conductor? Find the electric field E everywhere for this system when a point charge q is placed at (a, a, 0), with a > 0, and find the force on the charge. *Hint: use the method* of images.
- 3. (a) State the vacuum versions of Maxwell's equations and show that they imply conservation of charge.
 - (b) In a simple conductor $\mathbf{J} = \sigma \mathbf{E}$, where \mathbf{J} is the current density, \mathbf{E} is the electric field and σ is the conductivity, which we assume is constant and uniform in the conductor. Show that any charge density inside the conductor decays exponentially in time at a rate which should be determined.
 - (c) Define the field $\mathbf{K} = \mathbf{E} + \alpha \mathbf{B}$, where \mathbf{E} and \mathbf{B} have their usual meanings, and α is a (complex) constant. Show that, in a source-free vacuum, α can be chosen so that

$$\nabla \times \mathbf{K} = \beta \frac{\partial \mathbf{K}}{\partial t},$$

where β is another (complex) constant, and determine all the possible values of α and the corresponding values of β .

MATHM234

١.

1

PLEASE TURN OVER

- (a) State the electromagnetic media form of Maxwell's equations in differential form, giving the definitions of the fields D and H. What are the physical interpretations of the polarization field P and magnetization field M?
 - (b) Consider a body occupying a region V with constant and uniform magnetization \mathbf{M}_0 in a vacuum. Show that the magnetic field **H** can be expressed as an integral over the surface S of V, and give its general form.
 - (c) Using the result of 4b, find an approximation to the magnetic field **H** valid far from the *ends* of a long thin circular cylinder, with magnetization \mathbf{M}_0 parallel to the axis of the cylinder. The cylinder has radius r and length 2a, with $a \gg r$.
- 5. (a) Starting from the vacuum versions of Maxwell's equations, state and prove the (standard version) of Poynting's theorem in a vacuum.
 - (b) What is the physical interpretation of Poynting's theorem?
 - (c) Verify Poynting's theorem for an electromagnetic plane wave in a vacuum, and show that the ratio of the time-averaged Poynting vector and the time-averaged energy density suggests that the energy moves at the speed of light.
- 6. A superconductor is a material that has no direct-current resistance, satisfies the vacuum version of Maxwell's equations and under steady-state conditions

$$\nabla \times \mathbf{J} = -\alpha \mathbf{B},$$

where **J** is the current density, **B** is the magnetic flux density and α is a material constant of the superconductor.

(a) Show that **B** satisfies

$$\nabla^2 \mathbf{B} = const. \mathbf{B},$$

and determine the constant.

- (b) Suppose that the superconductor occupies a half-space, which we take to be $x \ge 0$ in the Cartesian coordinates (x, y, z). Show that a consistent solution in $x \ge 0$ exists of the form $\mathbf{B} = (0, 0, B(x))$, with $B(0) = B_0$, and find the solution for B(x) which decays as x tends to infinity.
- (c) Find the corresponding solution for the current density J in $x \ge 0$.