UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

¥

Mathematics M212: Analysis 4: Real Analysis

COURSE CODE	: MATHM212
UNIT VALUE	: 0.50
DATE	: 16-MAY-02
TIME	: 10.00
TIME ALLOWED	: 2 hours

02-C0944-3-90

© 2002 University of London

TURN OVER

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Define what it means for a sequence of functions $(f_n)_{n=1}^{\infty}$ to converge uniformly on an interval [a, b].
 - (b) State the Heine-Borel Theorem.

(c) Let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous real functions on [a, b] that converges pointwise to a continuous function f. Suppose in addition that $(f_n(x))_{n=1}^{\infty}$ is monotonic for each $x \in [a, b]$. Prove that $f_n \to f$ uniformly on [a, b].

(d) Suppose that $f_n \to 0$ pointwise on [a, b] and $(|f_n(x)|)_{n=1}^{\infty}$ is decreasing for every x. Must $f_n \to 0$ uniformly?

2. (a) Define what it means to say that a sequence of functions $(f_n)_{n=1}^{\infty}$ on a set $I \subseteq \mathbb{R}$ is a uniform Cauchy sequence.

(b) State and prove the General Principle of Uniform Convergence for a sequence of functions $(f_n)_{n=1}^{\infty}$ on a set $I \subseteq \mathbb{R}$.

(c) Suppose that $\sum_{n=1}^{\infty} M_n$ is a convergent series of nonnegative real numbers and $(f_n)_{n=1}^{\infty}$ is a sequence of functions on $I \subset \mathbb{R}$ such that $||f_n||_{\sup} \leq M_n$ for every n. Prove that the series $\sum_{n=1}^{\infty} f_n$ converges uniformly.

(d) Suppose that $\sum_{n=1}^{\infty} f_n$ is a uniformly convergent series of functions on $I \subseteq \mathbb{R}$. Prove that $||f_n||_{\sup} \to 0$ as $n \to \infty$.

(e) Suppose $\sum_{n=1}^{\infty} f_n$ is a uniformly convergent series of functions. Must $\sum_{n=1}^{\infty} ||f_n||_{sup}$ converge?

3. Let $(\phi_n)_{n=1}^{\infty}$ be an orthonormal sequence of functions on [a, b] and suppose that f is Riemann integrable on [a, b].

(a) Define the Fourier series $\sum_{n=1}^{\infty} a_n \phi_n$ of f on an interval [a, b] with respect to $(\phi_n)_{n=1}^{\infty}$.

(b) Show that, for $n \ge 1$,

$$\sum_{i=1}^{n} a_i^2 \le \int_a^b f(x)^2 dx.$$

(c) Prove that for $n \ge 1$ and any real numbers c_1, \ldots, c_n ,

$$\int_{a}^{b} (f(x) - \sum_{i=1}^{n} a_i \phi_i(x))^2 dx \le \int_{a}^{b} (f(x) - \sum_{i=1}^{n} c_i \phi_i(x))^2 dx.$$
PLEASE TURN OVER

MATHM212

(d) Determine the Fourier series

$$\frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx)$$

for the function f(x) = |x| on $[-\pi, \pi]$. Assuming that this converges to f(x) at 0, deduce that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

- 4. (a) Define a *contraction mapping* in a metric space.
 - (b) State and prove the Contraction Mapping Theorem.

(c) Suppose that $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are contraction mappings. Prove that there are points $x, y \in \mathbb{R}$ such that f(x) = y and g(y) = x. [Hint: Consider the mapping $h : \mathbb{R}^2 \to \mathbb{R}^2$ defined by h(x, y) = (g(y), f(x)). Choose a suitable metric.]

5. (a) Define what it means for a function $d: X \times X \to \mathbb{R}$ to be a *metric*. Define the terms *open ball* and *open set* in a metric space.

(b) Define what it means for a function f between two metric spaces (X, d_X) and (Y, d_Y) to be *continuous*. Prove that if $f : X \to Y$ is continuous then $f^{-1}(G)$ is open in X whenever G is open in Y.

(c) Define what it means for a set K in a metric space to be *compact*. Prove that a continuous image of a compact set is compact.

(d) Prove that if K is compact then every sequence of points of K has a convergent subsequence.

(e) Consider the space $X = (C[0, 1], ||.||_{sup})$ of continuous functions on [0, 1] with the supremum norm. Prove that the closed unit ball of X is not compact.

6. (a) Define what it means for a function f : ℝⁿ → ℝ^m to be differentiable at x ∈ ℝⁿ.
(b) Prove that if T : ℝⁿ → ℝ^m is linear then DT(x) = T for all x ∈ ℝⁿ.

(c) Define the Jacobian matrix $Jf(\mathbf{x})$ for a differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$. Prove that $Df(\mathbf{x})$ can be represented by $Jf(\mathbf{x})$.

(d) State the Chain Rule for differentiable functions $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$. (e) Suppose $f, g : \mathbb{R}^2 \to \mathbb{R}$ are differentiable functions. Let $u(r, \theta) = f(r \cos \theta, r \sin \theta)$ and $v(r, \theta) = g(r \cos \theta, r \sin \theta)$. Use the Chain Rule to write down expressions for $\frac{\partial u}{\partial r}$ and $\frac{\partial u}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, where $x = r \cos \theta$ and $y = r \sin \theta$. [Hint: Let $h(r, \theta) = (r \cos \theta, r \sin \theta)$ and consider the composition $f \circ h$.]

MATHM212

END OF PAPER

ŗ