UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualifications:-

B.Sc.

M.Sci.

Mathematics C332: Algebra II

COURSE CODE

: MATHC332

UNIT VALUE

: 0.50

DATE

: 17-MAY-04

TIME

: 14.30

TIME ALLOWED

: 2 Hours

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Let K be a field, and let α and β be algebraic over K, with minimum polynomials of degree a and b respectively. Stating clearly any results you use, prove that $lcm(a,b) \leq [K(\alpha,\beta):K] \leq ab$. Give an example where both inequalities are strict, justifying your answer.
 - (b) Justifying your answers, find the degree of each of the following extensions:
 - (i) $\mathbf{Q}(\alpha) : \mathbf{Q}(\alpha + \frac{2}{\alpha})$, where $\alpha = 2^{1/5}$,
 - (ii) $\mathbf{Q}(\alpha, \beta) : \mathbf{Q}$, where $\alpha = 2^{1/5}$ and $\beta = 3^{1/11}$.
- 2. (a) Prove Dedekind's Lemma (that any finite set of distinct monomorphisms from one field K to another field L is linearly independent over L).
 - (b) What does it mean to say that a group G is soluble? Prove that if G is soluble and N is a normal subgroup, then G/N is soluble.
- 3. Let L: K be a field extension. Define what it means to say that the extension L: K is (a) finite, (b) finitely generated, (c) algebraic, (d) normal (e) a splitting field. For each of the following implications, either prove it or provide a counterexample:
 - (i) L: K finite $\Rightarrow L: K$ algebraic,
 - (ii) L: K finitely generated and algebraic $\Rightarrow L: K$ finite,
 - (iii) L: K algebraic $\Rightarrow L: K$ finite,
 - (iv) L: K normal and finite $\Rightarrow L: K$ splitting field,
 - (v) L: K finite $\Rightarrow L: K$ normal,
- 4. Suppose that K is a field of characteristic 0, and L:K is a finite extension.
 - (a) Stating clearly any results that you use, prove that there are only a finite number of fields M such that $K \subseteq M \subseteq L$.
 - (b) Using part (a), prove that any finite extension of K is simple.
 - (c) Let $L = \mathbf{Q}(\sqrt{3}, \sqrt[5]{7})$. Find an element $\alpha \in L$ such that $L = \mathbf{Q}(\alpha)$, justifying your answer.

PLEASE TURN OVER

MATHC332

1.

5. Let L be the splitting field of the polynomial $t^5 - 3$ over \mathbf{Q} . Find the Galois group G of $L : \mathbf{Q}$ (give generators and relations for G). Find all intermediate fields K of degree 4 over \mathbf{Q} .

 $[You\ should\ justify\ your\ reasoning\ but\ may\ assume\ relevant\ results,\ including\ the\ Fundamental\ Theorem\ of\ Galois\ Theory.]$

MATHC332