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All questions may be attempted but only marks obtained on the best four solutions will

count.

The use of an electronic calculator is not permitted in this examination.

1. (a)

Let V' be a vector space over a field F. Define what it means to say that
f:V xV —F is a symmetric bilinear form.

Show that if ¢ : V' — F is a quadratic form and 1+ 1 # 0 in F then there is a
unique symmetric bilinear form f such that, for every v € V,

flv,v) = q(v).

Give an example of a quadratic form q : F; — I, for which this is not true.

Consider the following symmetric matrices:

121 4 2 4
A=]231|, B=|22 2
112 4 25

By finding their canonical forms decide whether A and B are

(i) congruent over R;
(ii) congruent over C.

If V is a Euclidean space and o : V' — V is a linear mapping define the adjoint
of a.

What does it mean to say that « is self-adjoint? _
Prove that if o is self-adjoint and £ is an orthonormal basis for V' then the
matrix representing o« with respect to £ is symmetric.

Show that if A € "R" is symmetric then the eigenvalues of A are real.
Consider the matrix '

A=

—

11
1179,
11

with characteristic polynomial c4(z) = z?(z — 3). Find an orthogonal matrix
P such that P"!AP = PTAP is diagonal.

MATHM221 PLEASE TURN OVER



3. (a) IV is a real vector space what does it mean to say that

(i) <,> is an inner product on V;
(i) S C V is orthonormal (with respect to an inner product <, >).

Show that if V' is an inner product space and
S={s1,s92,...,8,} CV

is orthonormal then S is linearly independent.

(b) Consider the inner product space of real polynomials of degree at most two
P2(R) = {ao + a1 + 0’23:2 l Qp, Q1,02 € R})

with the inner product

<frg>= / f(@)g(e)da.

Given that £ = {1, z, 2%} is a basis for P,(R), find an orthonormal basis F for
P2(R) by applying the Gram-Schmidt process.
Find the transition matrix from € to F.

4. (a) Consider the following polynomials f, g € Qz}:
fiz)=z'+2* +2+1, g(z) =2* - 1.
(i) Using Euclid’s algorithm find d = hcf(f, g).
(if) Find h,k € Q[z] such that Af + kg = d.

(b) Let V be a finite dimensional vector space over a field Fand a: V — V be a
linear map with distinct eigenvalues A, ..., A, and minimal polynomial

r

ma(z) = [J(z — X)™.

=1

Define the term generalized eigenspace.
State the Primary Decomposition theorem.
Prove that if f, g € F[z] and hef(f, g) = 1 then

ker(fg(a)) = ker(f(a)) & ker(g(a)).

Hence prove the Primary Decomposition theorem.
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5. (a) Let V be an n-dimensional vector space over C and let o : V — V be a linear
map with characteristic polynomial c,(z) = (z — A)" and minimal polynomial
mqo(z) = (z — \)°. Define the following terms:

(i) a Jordan basis;
(ii) a Jordan block matrix, J,(A).

Describe the Jordan normal form of «, explaining how the number of blocks of
each size may be calculated given the dimensions of the generalized eigenspaces.

(b) In each of the following cases find the Jordan normal form of the matrix A.
(i) ca(z) = (z — 3)3, ma(z) = (z — 3).
(ii) ca(z) = (z — 3)3, ma(z) = (z — 3)3.
(ili) ca(z) = (x — 3)*(z — 2)3, ma(z) = (z — 3)%(z — 2)?, null(A — 3I) = 2.
(iv) ca(z) = (z — 5)%(z — 3)!1°, ma(z) = (z — 5)°(z — 3)8, null(A — 5I) = 8,
null((A — 5I)?) = 16, null((A — 51)*) = 27 and rank(A — 3I) = 40.
(v) ca(z) = (z — 2)'%, (A - 2I)% # 0, rank(A — 2I) = 8, null((A - 21)?) =7
and null((A — 2I)*) = 10.

6. (a) Suppose V is an n-dimensional vector space over C and « : V — V is a linear
map with characteristic and minimal polynomials given by

calx) = my(z) = (x — A)™.
(i) Prove that if v € V satisfies (& — A1)*"!v # 0 then
E={(a—=A)""v,(a— A1)"2v,. .., (a - Al)v, v}

is a basis for V.
(ii) Calculate the matrix representing o with respect to €.

(b) Consider the following matrix

Find
(i) J, the Jordan normal form of A;
(i) P € GL(3,C), satisfying P7!AP = J;
(iii) J.
Find a matrix B such that A% = BP~L.
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