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All questions may be attempted but only marks obtained on the best four solutions will
count.
The use of an electronic calculator is not permitted in this examination.

Throughout F denotes a field and a basis is always assumed to contain a finite number of
elements.

1. (a) Let A= (a;;) € "F".
Define
(i) the (z,j) minor M;; of A,
(i) the (i, 7) co-factor A;; of A.
Give the expansions of |4| by its ith row and by its jth column.
Prove that |AT| = |A|, where AT is the transpose of A.

(b) Define
[ —2 1 ... 0 0]
1 -2 ... 0 O
A, =
o o ... =2 1
0 0. .. 1 -2

where A4, € "R™ has —-2’s down the main diagonal, 1’'s down the superdiagonals
and zeros elsewhere. :

Let u, = |A,|, where u; = —2 and us = 3. Prove that u, = —2u,_1 — u,_s for
n 2 3 and deduce that u, = (—1)*(n+1).
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2. (a) Let A € "F". Define the terms:

(i) eigenvalue of A,
(ii) eigenvector of A,
(iii) A is diagonalizable.
Show that A is diagonalizable if and only if there is an invertible matrix
P € GL(n,F), whose columns are eigenvectors of A.
(b) Let

as[t 2ewe

(i) Find P € GL(2,R) such that P~'AP is a diagonal matrix.
(ii) Find A™ for every n € N.

3. Let gV be a vector space and U C V. Define what it means to say that U is a
subspace of V.

(a) Let A and B be subspaces of V.

(i) Define A+ B and show that A + B is a subspace of V.

(ii) Define what it means to say that V is the direct sum of A and B,
V = A® B. Show that V = A® B if and only if every v € V can be
expressed in the form v = a + b for unique a € 4, b € B.

(b) Let A = {(s,2s) : s € R} and B = {(t,t) : t € R}. Show that A and B are
subspaces of R? and that R? = A® B. Express (—1,1) € R? uniquely in the
form (—1,1) = a + b, where a € A,b € B. Justify your answers.

[In your answers to (a) and (b) you may use any standard subspace tests
which you require.]
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4. (a) Let {vy,...,v.} CV where gV is a vector space. Define the following:

(i) {v,...,2,} is linearly dependent,
(ii) {v;,--.,v,} is linearly independent,
(iii) the linear span L(v,...,v,) of {vy,...,2,},
(iv) {v,...,v,} is a spanning set for V,
(v) {vy,...,9,} is a basis for V.
Show that {v;,...,v,} is linearly dependent if and only if v, € L(vy, .. v 1)
for some 1 < < r.
<

(b) Let g, € R, 1 <4 < 5, where

1 1 3 2 1

1 0 -1 -1 -1
a; = 21, ap=|-1]1, az = 01, au= ], a;= 1

0 2 4 2 -1

1 1 3 2 1
Show that {a,, a,, as, a4, a5} is linearly dependent and find 1 < < 5 such that
a; € L(a;,...,9;,,). Find a subset of {a;,a,,4a,,0,,0a:} Wthh is a basis for

L(a;,a,,a4,0,4a5). Justify your answers.

5. State, without proof, the Steinitz Exchange theorem.

(a) Show that any two bases of a vector space always have the same number of
elements.

State what it means to say that a vector space V is finite-dimensional and
define the dimension of V.

(b) Let gV be a finite-dimensional vector space with dim(V) = n. If {v,, . .. Unt C
V spans V, show that {v,,...,v,} is a basis for V.
[You may assume, without proof, any standard results about span-
ning sets.]

(c) Consider Rs[z] = {ap+a1z+azz® + a3z’ 1 a; € R,0 < < 3} as a vector space
over R in the usual way. Determine which of the followmg sets of elements of
Ra[z], if any, are bases for Rs[z].

i) A={(1+2),(z+2?,(=*+2%}
(i) B={(1-2%,(z~1),(z* - 2),(z* — 2%},

(i) C={l,1+z,1+z+2%1+2+2>+2°}.
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6. Let gV, W be vector spaces. Define what it means to say that o : V — W is a
linear map. Show that this is the «case if and only if
(VA 1 € F)(Va,b € V) a(Aa + pb) = Aa(a) + po(b).

Let @ : V — W be a linear map. Define (1) Im(a), (i) Ker(a) and show that
Im(a) < W and Ker(a) < V.

Suppose further that V and W are finite-dimensional vector spaces. Define (i) r(a),
the rank of «, (ii) n(a), the nullity of a. State, without proof, a relation between
r(a) and n(a).

For any A, B € ?F? define o : 2F? — ?F% by X — AX + XB. Show that « is

g le=10 ] find (i) Ker(a), (ii) Im(a), (i)
n(a), (iv) r(a). Verify the relation between r(a) and n(a) which you stated above.

Justify your answers.

a linear map. For A =
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