FUNDAMENTALS OF CHEMISTRY 1B (CHEM1002) - November 2007

2007-N-2

- Allotropes are different structural forms of the same element eg C: diamond and graphite; oxygen O₂ and ozone O₃
- $9.2 \times 10^{-9} \text{ g L}^{-1}$

The solubility of Fe(OH)₃ will increase.

The equilibrium $Fe(OH)_3(s)$ \Longrightarrow $Fe^{3+}(aq) + 3OH^-(aq)$ lies to the left. Addition of H^+ consumes the OH^- : $H^+(aq) + OH^-(aq) \rightarrow H_2O$ and hence, from Le Chatelier's principle more $Fe(OH)_3(s)$ will dissolve.

2007-N-3

• Rate = $k[NO]^2[H_2]$ Rate constant = 250 M⁻² min⁻¹

2007-N-4

- 1.74
 - 8.43
 - 3.17
 - LiF

2007-N-5

• S is much larger atom than O, so H–S bond is much longer and weaker than H–O, so H₂O is weaker acid than H₂S.

•

$$Ni^{2+}$$
 4s $3d$

 Ni^{2+} is paramagnetic as there are 2 unpaired d electrons.

- III 6 4 $K^{+}(aq)$, $[Mn(CN)_{6}]^{3-}(aq)$
 - II 6 6 $[Ru(NH_3)_5(H_2O)]^{2+}(aq), NO_3^-(aq)$
 - III 6 3 $[Cr(en)_3]^{3+}(aq)$, $Cl^{-}(aq)$

2-methyl-2-pentene 2-methylcyclohexanol 2-bromobutane

2007-N-7

nucleophile electrophile

•

SOCl₂ / heat

$$Cr_2O_7^{2-}/H^+$$

2007-N-9

 $\bullet \qquad \qquad C_9H_{11}O_4N$

$$-NH_2$$
 > $-COOH$ > $-CH_2$ OH > $-H$

(S)

a = arene (aromatic ring)

 $\mathbf{b} = \text{carboxylic acid}$

$$HO$$
 H_2N
 H
 O

2007-N-10

•

OH
$$\begin{array}{c}
 & OH \\
\hline
 & 1. \text{ LiAlH}_4 \\
\hline
 & 2. \text{ H}^{\oplus}/\text{ H}_2\text{ O}
\end{array}$$
OH
$$\begin{array}{c}
 & \text{conc. H}_2\text{SO}_4 \\
 & \text{heat}
\end{array}$$

Starting material shows strong absorbance around 1700 cm⁻¹ due to C=O group. Intermediate shows strong absorbance around 3500 cm⁻¹ due to O–H group. Final product has no absorbance in these two regions.