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Answer any four of the six questions.
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Question 1

(a) Let U be a subspace of Rn. Give definitions of

(i) a basis for U , [3]

(ii) the dimension of U , [2]

(iii) a complement of U in Rn. [3]

(b) S is the subset {(1,−2, 1, 4), (3,−1, 2, 3), (2, 6, 0,−10)} of R4.

(i) Show that S is a linearly dependent set and find a basis for the subspace of R4

spanned by S. [7]

(ii) Hence find a basis for a complement of span(S) in R4. [2]

(c) Let {v1,v2, . . . ,vm} be a linearly independent set of vectors in Rn.

(i) Briefly explain why m ≤ n. You may assume any result that was proved in the
lectures. [2]

(ii) Show that if the set {v1,v2, . . . ,vm,u} is linearly dependent then u is a linear
combination of the vectors v1,v2, . . . ,vm. [6]

Question 2

Let U and V be subspaces of Rn.

(a) Prove that the intersection U ∩ V is a subspace of Rn. [8]

(b) Now let U = span{(1, 0, 1), (0, 1, 0)} and V = span{(1, 1, 0)}.
Show that U ∩ V = {(0, 0, 0)} and deduce that R3 = U ⊕ V . [7]

Let α = (i, j,k) be the standard ordered basis for R3 and let β be the ordered basis
( (1, 0, 1), (0, 1, 0), (1, 1, 0) ).

(c) Write down the change matrix P from β to α coordinates and find the change matrix
from α to β coordinates. [7]

(d) Let A and B be 3×3 matrices such that PB = AP, where P is the change matrix found
in part (c). Describe the significance of this relationship in terms of a linear map of
R3. [3]
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Question 3

(a) For each of the following, state whether or not it is one of the axioms for a real vector
space V . [4]

(i) (u + v) + w = u + (v + w) for all u, v, w ∈ V ,

(ii) there exists an element 1 ∈ V such that 1v = v for all v ∈ V ,

(iii) uv = vu for all u, v ∈ V ,

(iv) (a + b)v = av + bv for all a, b ∈ R and v ∈ V .

(b) Let X be a fixed 2 × 2 matrix. Let ZX be the set of 2 × 2 real matrices A such that
XA is the 2× 2 zero matrix.

(i) Prove that ZX is a subspace of M2,2(R). [6]

(ii) Find a basis for ZX when X =

(
1 1
1 1

)
. State the dimension of ZX in this case. [8]

(c) V and W are vector spaces with ordered bases α = (v1, v2, v3) and β = (w1, w2, w3, w4)
respectively.

T : V → W is the linear map defined by its effect on the basis elements as follows:

Tv1 = w1 + w2 + w3 + w4, T v2 = w1 − w2 − w3, T v3 = w1 + 3w2 + 3w3 + 2w4.

Find a basis for the kernel of T . [7]

Question 4

(a) If λ is an eigenvalue of a linear map T : V → V , show that λ + 1 is an eigenvalue of
T + I where I denotes the identity linear map on V . [5]

(b) T is the linear map of R3 whose standard matrix is A =

 0 1 1
1 0 1
1 1 0

.

(i) Show that T has two distinct eigenvalues. [7]

(ii) Find bases for the two eigenspaces of T . [10]

(iii) Write down an ordered basis of R3 consisting of eigenvectors of T . Give the matrix
which represents T relative to this ordered basis. [3]
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Question 5

(a) Let q be the real quadratic form 3x2 − 4xy + 6y2.

(i) Find an orthogonal change of coordinates which transforms q to the form
aX2 + bY 2. State the values of a and b, and give each of X and Y in terms of x
and y. [9]

(ii) Hence find the principal axes of the conic 3x2 − 4xy + 6y2 = 5. Sketch the curve
and state what type of conic it is. [5]

(b) Let A be a positive definite real matrix. Prove that the matrix AtA is symmetric and
positive definite. [6]

(c) Let V be a two-dimensional real vector space with basis {u, v}.
Let V ∗ be the vector space consisting of all linear maps from V to R.

(i) Give the word which is usually used to describe the space V ∗. [2]

(ii) Write down an ordered basis α for V ∗, defining each element clearly. [3]

Question 6

(a) Let U be the subspace of F(R) spanned by {ex, e−x}.

Let B : U ×U → R be given by B(f(x), g(x)) =

∫ 1

0

f(x)g(x) dx for any f(x), g(x) ∈ U .

(i) Show that B is an inner product on U . [9]

(ii) Find the matrix of B relative to the ordered basis (ex, e−x). [7]

(b) (i) State what is meant by a unitary matrix. [2]

(ii) Suppose

(
reiθ reiθ

rie−iθ −rie−iθ

)
is a unitary matrix for all real values of θ.

Find the possible values of the real number r. [7]
[You may assume that z1z2 = z1 z2 for all z1, z2 ∈ C, i = −i and eiθ = e−iθ.]
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