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At this point it is natural to return to the question of what a tensor 
actually is…

There are different approaches to this. The most “elegant” solution is 
to focus on the geometric interpretation. Then a tensor is…

… a linear function of a number of vectors. Each tensor has a number 
of “ slots" that can be filled with vectors. The number of slots 
determines the rank of the tensor. If all slots are filled the result is a 
number, if one slot is left empty the outcome is a vector, and so on.

Tensors

This picture is elegant, but it does not really tell us how to calculate 
with tensors. A more “practical” start may be to focus on a few  
examples. 
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Let us consider the displacement vector dxa that connects two events with 
coordinates xa and xa+dxa.

Suppose we want to work out how this vector changes if we make the 
coordinate change

Thinking of the new (primed) coordinates as functions of the old
(unprimed) coordinates, we see that the required transformation is

a a

Contravariant vectors

x x′→

a
a b

b

xdx dx
x
′∂′ =

∂
This transformation property defines a (contravariant) vector. In general, 
we have

a
a b

b

xX X
x
′∂′ =

∂
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a

a a a dxx x u
d

τ
τ

= → =

A typical example is the tangent vector to a curve (e.g. the four velocity)
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In this case it is natural to start with a scalar field φ=φ(xa) .

Again consider the coordinate change                    but now think of the old 
(unprimed) coordinates as functions of the new (primed) coordinates. 

It follows that

a a

Covariant vectors

x x′→

This transformation (which involves the inverse transformation matrix) 
property defines a covariant vector. In general, we have

b

a ba

xX X
x
∂′ =
′∂

The archetypal example is the gradient.

( ( ))      
b

a
a a b

xx x
x x x
φ φφ φ ∂ ∂ ∂′= → =
′ ′∂ ∂ ∂



MATH3006 
Relativity, black holes and cosmology

When we are dealing with tensors, we can define different kinds of 
derivatives. The main requirement is that the operation is tensorial.

Let us first consider the (usual) partial derivative;

Partial derivatives

How does this object transform if we change coordinates? After some 
work, we find that

 ,                     
a

a a
b bb

X X X
x

∂
∂

∂
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a d a
a b b

c c b c d b

d a a d
b b

dc b d b c

x x xX X X
x x x x x

x x x xX X
x x x x x

′ ′⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂′ ′∂ = =⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
′ ′∂ ∂ ∂ ∂

= ∂ +
′ ′∂ ∂ ∂ ∂ ∂

So… the partial derivative does not transform like a tensor. Hence, it is not 
(without modification) a useful concept for tensors.
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It is quite easy to see why we ran into trouble with the partial derivative. 
Recall that a vector, like the four velocity, is generally written

If we want to define the rate of change as

Covariant derivative

Then we need to account for the fact that the two four velocities “live” in 
different tangent spaces. In order to make the operation meaningful, we 
need to move one of the vectors so that the limit can be taken in the same 
tangent space. 

This sounds complicated…

… but, in fact, it is not so bad.

a
au=u e

0

( ) ( )lim
τ

τ τ τ
τΔ →

+ Δ −
∇ =

Δ
u uu
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We need to work out the stretching and twisting of the basis as we move 
through spacetime. This requires the connection between the two tangent 
spaces.

Suppose we want to define the derivative

First of all, it is easy to see that we have no problem with scalars. In that case 
there is no issue with tangent spaces, and it follows that

aa∇ = ∇ = ∇e

a aφ φ φ∇ = ∇ = ∂

In the case of a vector, like the four velocity, we need

( ) ( ) ( ) ( ) ( )b b b b b
a a b a b a b a b a bu u u u u∇ = ∇ = ∇ + ∇ = ∂ + ∇u e e e e e

We now make use of the fact that tensor calculus is linear. We should be able 
to write any expression as a linear combination of the basis vectors. Hence, 

c
a b ba c∇ = Γe e

which leads to the covariant derivative;

( ) ( )b b c b b c
a a b ba c a ca bu u u u∇ = ∂ + Γ = ∂ +Γu e e e

  ; 
b b b b c

a a a cau u u u∇ = = ∂ +Γ
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Using the definition of the dual basis                        one can also show that

For a covector we then get

A few comments:

i) The (affine) connection         does not transform as a tensor.

ii) We will assume that spacetime is torsion free, which means that the 
connection is symmetric;

iii) The connection vanishes in Minkowski space.

b b c
a ca∇ = −Γe e

a a
b bδ⋅ =e e

;
c

a b b a a b ba cu u u u∇ = = ∂ −Γ

c
abΓ

c c
ab baΓ = Γ
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We (obviously) want to be able to work out the connection for a given 
spacetime. 

To do this, we require that the covariant derivative is “compatible”
with the metric. This means that we want the derivative to be such that

Working this out, we see that we should have

This can be used to show that the metric connection is

These coefficients are also known as the Christoffel symbols.

0d d
c ab c ab ac db bc adg g g g∇ = ∂ −Γ −Γ =

0a bcg∇ =

Christoffel symbols

( )1
2

a ad
bc b dc c db d bcg g g gΓ = ∂ + ∂ −∂

Note: We also have

0      0a ab
c b c gδ∇ = → ∇ =
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We want to be able to distinguish “freely falling” objects, i.e. bodies 
that are not acted on by any “forces”. It is easy to define this concept in 
the local  inertial frame.

The four-velocity should be constant, such that

Directional derivative

= constant    
a

a a a a adxu k x k l
d

τ
τ

= = → = +

This means that the world-line is “as straight as possible”. 

Another way to obtain the result is to demand that the derivative of ua

along itself must vanish. Thus we define the directional derivative as

A vector is parallel transported if the absolute derivative

a b a
bu u u∇ ≡ ∇u

0
a

aDu u
Dτ

= ∇ =u
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An affine geodesic is a curve along which the tangent vector is parallel 
propagated. 

This means that the four-velocity should be constant, such that

Affine geodesics

Alternatively, this can be written

or

( )
a

aDu u
D

λ τ
τ

=

a au uλ∇ =u

2

2

a b c a
a
bc

d x dx dx dx
d d d d

λ
τ τ τ τ

+ Γ =
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If the curve is parametrized in such a way that λ vanishes, then we are 
using an affine parameter. For a timelike worldline we can use the 
proper time.

This leads to the equation for metric geodesics

or

where

Metric geodesics

0a b a
bu u u∇ = ∇ =u

2

2 0
a b c

a
bc

d x dx dx
d d dτ τ τ

+ Γ =

1
a b

ab
dx dxg
d dτ τ

=
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There will also exist geodesics for which the distance between different 
points is zero. 

To describe such null geodesics, we need some other affine parameter, 
s, say. Then we have

with

Null geodesics

2

2 0
a b c

a
bc

d x dx dx
ds ds ds

+Γ =

0
a b

ab
dx dxg
ds ds

=

By studying the geodesics of a given spacetime we learn how both 
massive objects and light move.
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