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In developing relativity, we need to think carefully about many 
concepts that we would normally take for granted.

We have already been forced to abandon the notion of “simultaneity”. 

We want the mathematical model to be coordinate independent. 

It is natural to think of spacetime as being made up of events, P, which 
can be defined without resorting to a given coordinate system.

Of course, given a set of coordinates xa (a=0-3) there is a one-to-one 
mapping between the events and particular coordinate values.

Spacetime events
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Consider two events P and Q, and define the vector Δx that separates 
them. It is easy to see that, even though different observers may 
disagree on the coordinate values associated with the events, they will 
agree both on the events and the vector that separates them.

The principle of relativity forces the interval (the “distance” in 
spacetime)

to be the same in all reference frames.

This means that we can associate the squared length of a vector with 
the spacetime interval. 

However, we have already seen that the scalar product (which we need 
to work out the length of a vector) requires the use of the metric. It 
follows that 

( ) ( )2 22ds s= Δ = Δx

2 2( )a b
abds

The spacetime interval

g dx dx d= = x
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We can generalize the Lorentz transformation to describe a boost in 
any direction. To do this, we combine the idea with an ordinary 
rotation.

Lorentz transformation

Mathematically, a rotation is a transformation in 3 dimensions which 
leaves the distance between two points invariant;

( ) ( ) ( )2 2 22
1 2 1 2 1 2x x y y z zσ = − + − + −

A Lorentz transformation leaves the notion of an interval is spacetime
invariant; 

The infinitesimal version of this is

( ) ( ) ( ) ( )2 2 2 22
1 2 1 2 1 2 1 2s t t x x y y z z= − − − − − − −

2 2 2 2 2ds dt dx dy dz= − − −
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Let us consider the case of a flat spacetime, described in terms of the 
usual Cartesian coordinates xa={t,x,y,z} . The corresponding line 
element takes the simple form 

(signature -2).

We have already seen that this interval is invariant under the Lorentz
transformation. In fact, this metric (known as the Minkowski
spacetime) is the metric associated with special relativity. It covers the 
whole manifold.

The Minkowski metric is usually written                  where

2 2 2 2 2a b
abds g dx dx dt dx dy dz= = − − −

ab abg

Minkowski metric

η=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

abη

⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠
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In order to discuss motion in spacetime, we need to develop the 
concept of an inertial frame. 

It is natural to think of an inertial frame as a set of rods and clocks that 
moves in such a way that it is not affected by any forces. 

The rods form an orthogonal lattice with uniform length intervals that 
can be used to set up a (local) Cartesian coordinate system. The clocks 
are synchronized via light signals.

Once we identify an inertial frame, we have a natural coordinate
system to record events. The coordinates associated with an event P is 
simply the coordinate location {x,y,z} of the event and the time t
measured by the clock at that location.

In a curved spacetime one cannot construct a global inertial frame, but 
the concept is still useful locally. Such local inertial frames are relevant 
in a small region of spacetime.

Inertial frames
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Now consider a moving body. The world-line of the body is the 
sequence of events P(τ ) , where τ is the (proper) time recorded by the 
ideal clock carried by the moving observer.

The tangent vector to the world-line defines the four velocity ua.

We define the four velocity using the standard “limiting” procedure;

The world line

0

( ) ( ) lim
a

a dx dP P Pu
d d τ

τ τ τ
τ τ τΔ →

+ Δ −
= = =

Δ

Note: in a curved spacetime the tangent vector lives in the flat tangent 
space associated with each spacetime point P.
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The light cone
The light-cone defines the past and the future of each spacetime event.

Given the (squared) norm of any 
spacetime vector

We can distinguish three cases

Since the speed of light sets the speed 
limit, only events whose separation is 
timelike can be a part of the future 
(past) of the event P. 

2 a b a
ab aX g X X X X= =

2

2

2

0      timelike
0      null (lightlike)
0      spacelike

  

X
X
X

>

=

<
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Proper time
The time measured by the observers ideal clock (obviously) represents a 
“timelike” interval;

This defines the “proper time”. Since the spacetime interval is invariant, 
it follows immediately that

That is, the four velocity is always normalized to unity.

The four velocity is a timelike vector. 

2 2 0ds dτ= >

2

2 1
a b

a
a ab

d d dx dx dsu u
d d d d d

η
τ τ τ τ τ

= ⋅ = = =
x x
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Time dilation (again)
As an example, let us now consider how the proper time τ relates to the 
coordinate time t for an observer that moves with velocity

In this case we have

, ,dx dy dz
dt dt dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠

v

( )

2 2 2 2 2 2

2 2 2
2

2 2

      1

      1

d ds dt dx dy dz

dx dy dzdt
dt dt dt

dt v

τ = = − − −

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= −
If the velocity is constant, this is the time dilation result that we had 
before;

( )1 221

ddt
v

τ
=

−
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