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Current cosmological models are based on the idea that the Universe 
“looks the same everywhere”. 

This statement, sometimes called the Copernican principle, may seem 
crazy at first sight. However, it makes sense on a large “average” scale 
where local variations in density are smoothed out. 

The idea is supported by the fact that the observed variations in the 3K 
cosmic microwave background are at the 10-5 level.

Cosmological principle

The Universe is said to be homogeneous and 
isotropic.

Homogeneous: There are no privileged points 
in spacetime

Isotropic: There are no privileged directions. 

We will explore how we can use these general 
assumptions to build cosmological models. 
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As a first attempt to understand the implications of the cosmological 
principle, let us consider a constant curvature spacetime. 

Take as the starting point

Then it follows that

Use these results in the Einstein equations to get;

This places a contraint on the energy-momentum tensor. 

Is this kind of model useful?

( )abcd ad bc ac bd

Constant curvature

R K g g g g= −

3    and   12ac bd
bd abcd bd bdR g R Kg R g R K= = − = = −

1 3 8
2ab ab ab ab abG R Rg Kg Tπ= − = =
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Before we address this key question, it is worth considering the three 
possible cases. Taking, first of all, K=0 we obviously have flat space.

For K>0, we have the so-called de Sitter model. The relevant line element 
can be written;

The case K<0 leads to the anti-de Sitter model. We will not discuss it 
further, but this model has recently attracted quite a lot of attention from 
researchers trying to develop a quantum theory of gravity.

de Sitter

( )2 2 2 2 2 2 2 2 2cosh sin sintds dt d d dα χ χ θ θ φ
α

⎛ ⎞ ⎡ ⎤= − + +⎜ ⎟ ⎣ ⎦⎝ ⎠
Written in this form, we see that the de Sitter model represents a Universe 
that shrinks to a mimimum size and then re-expands. Alternatively, one 
can use static coordinates. Then

This shows that there is a “cosmological horizon” when Kr2=1.

( ) ( ) ( )12 2 2 2 2 2 2 2 21 1 sinds Kr dt Kr dr r d dθ θ φ
−

= − − − − +
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In modern physics it is generally understood that vacuum does not really 
represent “empty space”. 

Suppose we introduce an isotropic vacuum energy ρvac such that

Compare to a perfect fluid;

In general, we can decompose the energy-momentum tensor into a matter 
part and a vacuum energy part. This leads to

or

Can represent the vacuum energy by a cosmological constant Λ (or vice 
versa). 

  vac vac      a a
b b ab abT T gρ δ ρ= ⇒ =

vac vac( )       ab a b abT p u u pg p

Vacuum energy vs Λ

ρ ρ= + − ⇒ = −

( )matter vac matter
vac8 8 8ab ab ab ab abG T T T gπ π πρ= + = +

matter
vac8 8ab ab ab ab abG g G g Tπρ π− = − Λ =
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However…

The constant curvature models are not useful representations of the 
Universe. 

They are simply not compatible with a dynamically interesting amount of 
matter and radiation.

This is further emphasized by the fact that the visible matter appears to be 
moving apart, meaning that the relative importance of the matter
contribution was even greater in the past.  

Need to move on…

To make progress, we will relax the “perfect” cosmological principle and 
assume that  the Universe is only spatially homogeneous and isotropic.

This leads us to the Robertson-Walker model. 
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Use the same idea as before, but now assume that the model is only 
spatially homogeneous and isotropic. 

This means that we need to introduce a suitable “time coordinate”. To do 
this we adopt Weyl’s postulate, which essentially says that we can model 
the matter in the Universe as a perfect fluid. Then we associate the time t 
with the geodesics of the “fluid elements”.

This leads to the line element

If we also assume that the 3-space is homogeneous and isotropic, then the 
time coordinate can only enter hij through a common factor. So we have

where S(t) – which must be real – is called the scale factor. 

2 2      , 1 3i j
ijds dt h dx dx i j= − = −

[

World time

]2( ) ( )i
ij ijh S t g x=
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It is easy to see that, if the 3-space is to be isotropic about every point, 
then it must be spherically symmetric about every point. This means that 
we can write (recall the derivation of the Schwarzschild solution)

From this metric we find that the non-vanishing components to the Ricci 
tensor are

On the other hand, the constant curvature assumption now leads to (note 
sign!)

Constant curvature (again)

( )( ) 2 2 2 2 2sini j r
ijg dx dx e dr r d dλ θ θ φ= + +

( ) 11
2

22

 2
     2      

2ijkl ik jl il jk jl jl
R Ke

R K g g g g R Kg
R Kr

λ⎧ =
= − ⇒ = ⇒ ⎨

=⎩

1
11 22 2   and   1R r R re eλ λλ λ− −′ ′= = + −

In other words, we have

2
21

2

2
    1

1 2
Kre

e Kr
re e Kr

λ
λ

λ λ

λ
λ

−
− −

′ ⎫=
⇒ = −⎬′+ − = ⎭
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We have shown that the metric for a 3-space of constant curvature is

where K can be positive, negative or zero. This means that the line 
element for relativistic cosmology can be written

It is customary to rescale the radial coordinate and the scale factor in such 
a way that the curvature is parameterised by k=-1,0,+1. 

This leads to the Robertson-Walker line element;

( )
2

2 2 2 2
2 sin

1
i j

ij
drg dx dx r d d

Kr
θ θ φ= + +

−

[ ] ( )
2

22 2 2 2 2 2
2( ) sin

1
a b

ab
drds g dx dx dt S t r d d

Kr
θ θ φ

⎡ ⎤
= = − + +⎢ ⎥−⎣ ⎦

[ ] ( )
2

22 2 2 2 2 2
2( ) sin

1
a b

ab
drds g dx dx dt R t r d d

kr
θ θ φ

⎡ ⎤
= = − + +⎢ ⎥−⎣ ⎦

Robertson-Walker
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So far we have not considered the Einstein equations. To do this, we 
combine the Robertson-Walker spacetime with the postulated perfect 
fluid energy-momentum tensor. 

We have

Friedmann’s equations

( )

1 8
2ab ab ab ab

ab a b ab

R Rg g T

T p u u pg

π

ρ

− − Λ =

= + −

where we choose “co-moving” coordinates, such that (1,0,0,0)au =
The Einstein equations then lead to (here R is the scale factor!)

2

2

2

2

3 8

2 8

R k
R

RR R k p
R

πρ

π

+
− Λ =

+ +
− Λ = −

�

�� �
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We can rewrite these equations as

These are known as Friedmann’s equations. First written down in 1922, 
they were not taken “seriously” until after Hubble’s 1929 discovery that 
the Universe is expanding.

( )

( )

2

vac2 2

8 8
3 3 3

4 3
3 3

R k k
R R R

R p
R

πρ π ρ ρ

π ρ

⎛ ⎞ Λ
= + − = + −⎜ ⎟

⎝ ⎠
Λ

= − + +

�

��

Einstein had introduced the cosmological constant earlier. He was looking 
for static solutions to the field equations. However, there was a problem…

A static solution demands that                       . This shows that, if the 
pressure vanishes then the energy density vanishes as well..

Also, if the energy density is positive then the pressure must be negative. 

Hence, static solutions to the original Einstein equations did not appear to 
exist. To resolve the problem Einstein added the Λ term. 

When the expansion of the Universe was discovered, he referred to this as 
his greatest blunder…

3 0pρ + =
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Combining these equations we find 

If we now introduce the volume and the energy (recall E=mc2) we get 

Comparing this to the 1st law of thermodynamics, we learn that the 
evolution of a Friedmann Universe is adiabatic (no heat generation).

( ) ( )3 3 0d dR p R
dt dt

ρ + =

34
3      0

V R dE dVp
dt dtM V

π

ρ
⎫= ⎪ ⇒ + =⎬

= ⎪⎭

Alternatively, rewrite the equation as

( )3 0Rp
R

ρ ρ+ + =
�

�

To make further progress,  we need to provide an equation of state which 
relates p and ρ. In cosmology, it is generally assumed that the equation of 
state is linear. 

This means that we have

p wρ=
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This leads to

Distinguish three cases:

1) “Matter”, usually taken as pressureless dust. Then

and we see that the density decreases as the Universe expands. This is 
simply due to the fact that that total mass is constant.

2) “Radiation”. In this case we have

The energy density falls off faster than for matter because photons loose 
energy due to the redshift.

3) “Vacuum energy” (aka the cosmological constant)

At the present time, our Universe is matter dominated.

( ) 3(1 )3 1       wRw R
R

ρ ρ
ρ

− += − + ⇒ ∝
��

30      w Rρ −= ⇒ ∝

41 1            
3 3

p w Rρ ρ −= ⇒ = ⇒ ∝

0      1      constantp w Rρ ρ= − ⇒ = − ⇒ ∝ =
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Cosmological parameters
The rate of expansion of the Universe 

RH
R

=
�

is called the Hubble parameter. Its current value is

It is also common to define the Hubble length

This is a “typical cosmological scale”. In fact, the Universe should be bigger 
than this. 

Similarly, we can define the Hubble time (related to the “age” of the 
Universe)

24
0 70 10 km/s/Mpc                     1 Mpc 3 10 cmH ⎡ ⎤≈ ± ≈ ×⎣ ⎦

3

0

10  MpcH
cd

H
= ∼

10

0

1 10  yrHt H
= ∼



MATH3006 
Relativity, black holes and cosmology

The rate of change of expansion

is known as the deceleration parameter. Recent measurements suggest 
that it is positive – the expansion of the Universe is accelerating.

Finally, it is common to introduce the density parameter

Rewriting the Friedmann equation, we have

This shows that the sign of k depends on Ω, so the density parameter 
determines the nature of the Universe:

The current value is close to 1.

2

RRq
R

= −
��
�

2
crit

8
3H

πρ ρ
ρ

Ω = =

2
2

2 2 2

8       1
3

R k kH
R R H R

πρ⎛ ⎞
= = − ⇒ Ω − =⎜ ⎟

⎝ ⎠

�

crit

crit

crit

      0      open
      0      flat
      0      closed

k
k
k

ρ ρ
ρ ρ
ρ ρ

< ⇒ < ⇒
= ⇒ = ⇒
> ⇒ > ⇒
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The redshift
As usual, we obtain the equations for a light ray from the null geodesics. 
Consider purely radial motion;

Assume that a light ray is emitted from a star located at r=r1 at time t=t1
and then observed (by us) at r=0 at time t=t0. Then

Now consider a second light ray, emitted a time Δt1 later, and arriving with 
a delay Δt0. Since r1 does not change, we have

[ ]
( )

2
22 2

1 22 2
( ) 0      

1 ( ) 1

dr dt drds dt R t
kr R t kr

= − = ⇒ = ±
− −

( ) ( )
0 1

1 1

0

1 2 1 22 2
0( ) 1 1

t r

t r

dt dr dr
R t kr kr

= − =
− −

∫ ∫ ∫

( )
0 0 1

1 1

1 22
0( ) 1

t t r

t t

dt dr
R t kr

+Δ

+Δ

=
−

∫ ∫
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This leads to

From this we can deduce that the ratio of the observed frequencies is 
determined by the ratio of the scale factors;

For an expanding Universe the frequency of the observed light is redshifted.

Comparing to the classical Doppler formula we have

0 0 0 0

1 1 1 1

0 01 1

0 1 0 1

      
( ) ( ) ( ) ( ) ( ) ( ) ( )

t t t t

t t t t

t tt tdt dt dt
R t R t R t R t R t R t R t

+Δ

+Δ

Δ ΔΔ Δ
= ≈ + − ⇒ =∫ ∫ ∫

0 0 01

1 1 0 1

( ) ( )      
( ) ( )

t R t R t
t R t R t

ν
ν

Δ
= ⇒ =

Δ

0 0 1 01
0

0 1 1 0

( ) ( ) ( ) ( )1       ( )  
( ) ( ) ( ) L L

R t R t R t R tz z d H t d
R t R t R t

ν
ν

−
= + = ⇒ = ≈ =

�

Where we have used the luminosity distance dL. We learn that the redshift
is proportional to the distance. 
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