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We have seen that, when expressed in terms of an affine parameter s
(which, for a timelike curve could be the proper time), the equation for 
geodesics can be written

where

Geodesics
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Given a set of coordinates and the spacetime metric we can solve these 
equations to determine the motion of test particles and light rays. 

There is, however, an alternative approach to this problem. 
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Many physical laws can be derived from a “variational” approach. The 
basic idea is that a system tends to a state of minimum energy. By finding 
a suitable expression for this energy and minimising it, one can obtain the 
equations of motion.

Variational calculus was first developed for classical mechanics. In that 
case, one considers an action integral

Calculus of variations

1 2( ( ), ( ))       with   ( )    and   ( )
q

t p

I L x t x t dt x p k x q k
=

= = =∫
Varying the “path” one can show that the action is minimised if the Euler-
Lagrange equations are satisfied. These equations can be written;
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When L depends on a curve xa(t) this generalises to;
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We will use the variational approach to determine geodesics. 

Since we want the geodesics to represent the “shortest path” in spacetime, 
we wish to minimise

One can show that this leads us back to the geodesic equation.

Geodesics (again)
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It is, however, more practical (since one avoids the square-root) to work 
with

Then we have
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And the Euler-Lagrange equations lead to the same equations of motion 
as before.
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Let us apply this method to the problem of determining the geodesics of 
the Schwarzschild spacetime. Then we have

Schwarzschild orbits
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To find the timelike geodesics, we take

which leads to 
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Use this together with the Euler-Lagrange equations
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Taking a=0 we first of all find
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Taking a=2 we then get
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Finally, using a=3 we find 
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These are 3 of the 4 equations that we need…
To determine the final equation we can either set a=1 or simply use the 
fact that we must have 2L=1 for a timelike geodesic. This leads to;
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We want to understand what these equations are telling us.

Begin by considering a geodesic in the equatorial plane, θ=π/2.

From the 2nd of our equations we then see that

Noting that one can always rotate the axes in such a way that, at t=0 one 
has             , we realise that we can show that all derivatives vanish. 

In other words, these geodesics will remain in the equatorial plane.

Equatorial orbits
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Now consider the 3rd equation;

This equation represents the conservation of angular momentum J.
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The 1st equation leads to another constant of motion;

The energy, E, of the orbit is conserved.

Using these definitions in the radial (4th) equation we get
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We have arrived at a “final” equation for equatorial (timelike) geodesics;

What does this equation tell us?

Taking a derivative with respect to τ we get

This shows that, for circular orbits with r=R=constant, we will have

We learn that, for each value of                       there is a pair of circular 
orbits. However, a detailed analysis shows that only the outer one is 
stable. 

The innermost stable circular orbit corresponds to R=6M.
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Non-circular orbits can be quite complicated. 

Bound orbits have two “turning points”, in the solar system known as 
perihelion and aphelion.

The perihelion “advances” with each completed orbit.
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Let us consider the equatorial orbits from a different point of view. 

We had the two equations;

and

2r Jφ =

Two-body problem
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Let us re-write the latter in terms of a new variable u=1/r where u=u(φ). 

To do this, we need
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This equation can be written

Taking a derivative of this we arrive at
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This equation is very similar to the one that describes the two-body 
problem in Newtonian gravity (Binet’s equation). In addition, we have a 
term representing the general relativistic correction. 

In analysing this problem, it is helpful to introduce a dimensionless 
parameter ε=3M2/J2 such that
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In order to solve

we note that

Hence, it makes sense to use a perturbative method. Take 

to get
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The Newtonian problem

has solution

Or, if we orient the axes so that φ0=φ(t=0)=0;

The orbit is an ellipse.
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To solve for the relativistic corrections, we need

The standard method leads to the solution to the order ε problem;

The magnitude of one of these terms increases in time. It will soon grow to 
be the most important. Hence, we can approximate the total solution as

This shows that the period is not 2π, but

( ) ( )
2 2 2

2 20 1
22 2 2 2

hom. sol!

21 cos 1 cos cos 2
2

J u M M Me Mee e
M J J J J

φ φ φ= + = + + +

( )
2

21
1 22 2 2

secular!

1  sin cos 2
6

M Me Meu e
J J J

φ φ φ= + + −

( ){ } ( )2
0 2 2sin 1 cos 1Me Mu u e O

J J
ε φ φ φ ε ε≈ + ≈ + − +⎡ ⎤⎣ ⎦

( )2 2 1
1
π π ε
ε
≈ +

−



MATH3006 
Relativity, black holes and cosmology

The effect that we have determined 
means that the elliptical orbits do 
not quite close. 

With each revolution, the perihelion 
advances by 2πε.

Perihelion advance of Mercury

The effect is larger for bodies in closer orbits. In the solar system, the 
largest predicted effect is for Mercury. 

Einstein worked out that Mercury’s perihelion should advance by 43 
arcseconds per century. 

This agrees very well with observations, and is one of the classic tests of 
Einstein’s theory.

Note: The presence of other bodies (like Jupiter) leads to a much larger 
effect on Mercury’s orbit (5601 arcseconds per century). 
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