PMA110

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS Autumn Semester 2006–07

Numbers and Proofs

Answer **Question 1** and three other questions. If you answer more than three of the questions 2 to 5, only your best three will be counted. Question 1 is worth 28 marks; the other questions are each worth 20 marks.

1	(i)	(a)	Give the	English	names	for the	Greek	letters	ρ and ϕ	(1 mark)
T	(1)	(4)		Lingiisii	names	ior the	UICCN	ICT CT S	ρ and φ .	(1 111017)

(b) Give the symbol for the set of integers. (1 mark)

(ii) What does it mean for an integer a to divide another integer b? Prove that if a|b and a|c, then a|b + c. Is it true that if a|b or a|c, then a|b + c? (6 marks)

(iii) Consider the statement:

If a natural number *n* is divisible by 24, then n^2 is divisible by 48.

- (a) What is the converse of this statement? (1 mark)
- (b) What is the contrapositive of this statement? (1 mark)
- (c) Prove that this statement is true. (3 marks)
- (d) Is the converse true? Give a proof or a counterexample. *(2 marks)*

(iv) State the *division algorithm* for polynomials in $\mathbb{R}[x]$. Use it to determine the remainder when $x^5 - x^3 + 2x^2 + 2x$ is divided by $x^2 - x - 2$. (6 marks)

(v) State a simple condition in terms of f and its derivative f' for a number α to be a repeated root of a polynomial f. Use it to find a repeated root of the polynomial

$$x^4 + x^3 - 3x^2 - 5x - 2$$
,

and hence determine all of its roots.

Turn Over

2 hours

(7 marks)

PMA110

2 (i) What is meant by the *highest common factor* (a, b) of integers a and b, not both zero? (2 marks)

(ii) If a and b are two integers, and a = qb + r for integers q and r, show that (a, b) = (b, r). (5 marks)

(iii) (a) A student buys some pens for 35p and some files for 91p. The total bill is $\pounds 6.09$. Use the Euclidean algorithm to determine how many of each she bought.

(8 marks)

(7 marks)

(b) Another student bought some of the same pens and files, and was charged £3.29. Show that the cashier made an error. (5 marks)

3 (i) One of the congruences $68x \equiv 118 \pmod{187}$ and $68x \equiv 119 \pmod{187}$ has no solutions. Which is it? Find all solutions to the other, expressing your answer in the form $x \equiv a \pmod{m}$. (7 marks)

(ii) Find the general simultaneous solution to

 $x \equiv 46 \pmod{53}$ and $x \equiv 1 \pmod{59}$,

expressing your answers in the form $x \equiv a \pmod{m}$.

(iii) Find an integer which is five times a square and twice a cube. (3 marks)

(iv) By writing the natural number a in the form 1000q + r, for a suitable quotient q and remainder r, show that a is divisible by 8 if and only if the number formed by its final three digits is divisible by 8. (3 marks)

4 (i) Let p be a prime number, and let a be a non-negative integer. Prove by induction that $a^p \equiv a \pmod{p}$, assuming any standard results on binomial coefficients that you need. (5 marks)

(ii) What is 2007²⁰⁰⁷ (mod 77)? (6 marks)

(iii) Recall that the *Fibonacci numbers* are defined by $F_1 = F_2 = 1$, and $F_{n+2} = F_{n+1} + F_n$ for $n \ge 1$. Prove by induction that for all $n \ge 1$,

$$F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}.$$
 (4 marks)

(iv) Prove by induction that $8^n + 6$ is divisible by 14 for all natural numbers *n*. (5 marks)

PMA110

(3 marks)

5 (i) Prove that $\sqrt{20}$ is irrational.

(ii) Give decimal expansions of both a rational number and an irrational number strictly between 0.1234567890 and 0.123456789, explaining your answer briefly.

(3 marks)

(iii) Explain why the decimal expansion of any rational number m/n must eventually recur. (3 marks)

(iv) Write the real number 0.2007 as the ratio of two coprime natural numbers, expressing each in its *canonical prime factorisation*. (7 marks)

(v) Write $x = 0.\dot{a}_1 a_2 a_3 a_4 a_5 \dot{a}_6$, a recurring decimal with period 6. If x is written as a fraction in lowest terms, what is the largest denominator that x can have? What is the largest prime factor its denominator can have? (4 marks)

End of Question Paper