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Derivatives of trigonometric functions

(1) Differentiate f(x) = sinx:
e Start with the definition of f'(x):

sin(x 4+ h) —sinx

) = Jim h

e Use sin(z + h) = sinx cos h + cos x sin h:

;o\ 5. sinz(cosh —1)+cosxsinh
fila) = lim -

e Collect terms and apply limit laws:

() = sing lim 2P 1 i SR
fi(z) = SIIIZL’}ILIL% . + cosx}llli%
h—1 inh
o Use lim ———~ =0 and lim —— =1 to conclude f'(x) = cos .
h—0 h h—0 h
(2) A similar argument gives g COST == sin .
x

(3) We can now use the quotient rule to find the derivative of tan x.

dt d [sinzx
—tanx = —
dx dx \ cosx
d

(sinx) cosx — sin x<=(cos x)

a
dx

— dzx
cos? x
cosx cosx — sin x(— sin x)
cos? x
2 9
Ccos“x + s x
cos? x
1
cos? x

Summary: Derivatives of trigonometric functions

d .

—sinx = CosST

dx

d )
—cosTr = —sinz
dx

t ! 2

—tanz = =sec’x
dz cos? x

d d 1 ;
—secr = — =secrtanz
dx dx \ cosx

‘ d <cos T ) 9
—cotzr = — = —csclx
dx dxr \sinz
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d
—cCcscxr = = —cscxrcota
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Differentiating the composition of two functions

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point ¥ = g(x) and g(x) is differentiable at x, then
the composite function (f ° g)(x) = f(g(x)) is differentiable at x, and

(f e g¥(x) = f(glx))-g'(x).
In Leibniz’s notation, if ¥ = f(u) and # = g(x), then

dy _ dy du

dx ~ du dx’

where dy/du is evaluated at u = g(x).

Composite f- g

Rate of change at
xis fglx)) - g'tx)

g

Rate of change /,«"'"X Rate of change
atxisgx),. —e——  ag)isfilgx). —e——
B u = glx) ¥y = flu) = flglx))

The chain rule tells us that the rate of change of f o g at x is equal to the rate of change of
g at x multiplied by the rate of change of f at g(z).
Example: Differentiate y = sin(z? + ).

Let u = 22 + 2 and y = sinu. Then 3—; =2r+1 and % = cosu. Hence
dy  dydu

=2 = (2r+1 2 :
T = Qo de (2x 4+ 1) cos(z” + )

Parametric Curves

We can describe a point P moving in the zy-plane as a function of a parameter t (“time”)
by two functions x = f(¢) and y = ¢(¢) which give the coordinates of P at time ¢.

Position of particle

at time TN, ()




DEFINITION  Parametric Curve
If x and y are given as functions
x=f(t), y=g)
over an interval of f-values, then the set of points (x, y) = (f(¢), g(1)) defined by

these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable t is the parameter for the curve. If the interval of possible t-values is [a, b, then
[a, b] is called the parameter interval, the point (f(a), g(a)) is the initial point of the curve,
and the point (f(b), g(b)) is the terminal point of the curve. The parametric equations and
the parameter interval together form a parametrisation of the curve.

Examples:

(1) Determine the curve defined by the parametrisation = = vt , y =t , t € [0, 00).

In this example it is easy to solve the parametric equations and express y as a function of
x: we have y = t and t = 2% so y = 2. Note however that since z = /¢, = only takes
nonnegative values. Thus the curve is the segment of the parabola y = 2 which lies in the

positive quadrant.

? y=xix=0
P(V1 1)
(L 1)

(2) Find a parametrisation for the line segment in the xy-plane which joins the points (—2,1)
and (3,5).

Let’s suppose a point P = (z(t),y(t)) moves along the line segment starting at (—2,1) when
t = 0 and ending at (3,5) when ¢ = 1. Assuming the point moves at constant speed, its
position at time ¢ will be (=2,1) + ¢[(3,5) — (=2,1)] = (=2 + 5¢,1 + 4¢). This gives the
parametrisation: © = —2 + 5t and y = 14 4t for t € [0, 1].

Definition A parametrised curve x = f(t), y = g(t) is differentiable at t if f and g are both
differentiable at t.



It can be shown that if f and g are both differentiable at ¢ then y is a differentiable function
of x when x = g(t). We can now use the chain rule to deduce that

dy _dydr

dt  dx dt

Solving for dy/dz gives us the following formula for the slope of the parametrised curve
x = f(t), y = g(t) when it is differentiable at t and dz/dt # 0.

Parametric formula for dy/dx

dy  dy/dt
dr  dx/dt’

Example: Describe the motion of a particle whose position (z,y) at time ¢ is given by

xr=acost, y=bsint, 0§t§27r‘

and compute the slope of this curve at time t¢.

e We first use the two parametric equations to eliminate ¢ and find one equation involving
only x and y. Using cost = x/a, sint = y/b and cos®>t + sin®t = 1 we obtain

22
2tE=h
which is the equation of an ellipse.
e We have ‘fl—f = —asint and % = beost. The parametric formula for dy/dx now yields

dy dy/dt  bcost _bzx

dr  dx/dt  —asint  a?y’

Thus the slope of the ellipse at the point (z,y) is —(b*x)/(a’y).

Implicit differentiation

Suppose we have a curve consisting of all points in the xy-plane which satisfy an implicit
relation between x and y, i.e. an equation of the form F(z,y) = 0, and we want to find
its slope dy/dz. If we can solve the implicit relation F'(x,y) = 0 for y to obtain an explicit
relation y = f(x) for some function f then we can just differentiate f(x). We use implicit
differentiation when it is not obvious how to solve F(z,y) = 0 for y.

Example: Given the functional relation y? = z, find dy/dw.

New method by differentiating implicitly:

e Differente both sides of the equation y? = x with respect to x. Assuming y is a
differentiable function of x we can use the chain rule to obtain
dy

20— = 1.
ydx



e Solving for dy/dx we get

Compare with differentiating explicitly:

e We can solve y? = x to obtain two explicit solutions for y: y, = \/r and yy = —\/7.
Thus the curve y? = z is the union of the graphs of the two functions y; and y,. The
derivatives of these functions are:

dyl o 1 dyl o 1

dr  2vz " dr T 2w

e We should compare this with the solution obtained by implicit differentiation. Sub-
stituting y = y1 = & when y > 0 gives % = % = ﬁ Similarly substituting

Yy = y2 = —/x when y < 0 gives Z—z = 2iy = —ﬁ. Thus both solutions give the same

value for dy/dzx.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

2 2

Example: Use implicit differentiation to find dy/dz for the ellipse, x_2 + Y
a

The three steps in the above method for implicit differentiation give:

20 2yy

1.§ 2 =0



o yy _ 2
Cop? a?
b? x
I

This agrees with the result obtained previously using a parametrisation of the elipse.

Application: We can use implicit differentiation to calculate the derivative of the power
function y = z* when a is a rational number, say a = p/q for some integers p, ¢ with ¢ # 0:

e we have y? =
e implicit differentiation gives: 1y
d
e solving for Z—i as a function of z we obtain:
dy pa’' pa’y py pxi_p o
_— = — = -———=—-— = —— = — 4
dr qy=' qyir qr qx g

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then x”/7 is differentiable at every interior point of the
domain of x”/9~! and
d plq =P )1 ]

&* T gt

Linearisation

We can use linearisation to replace a complicated function by a much simpler linear function
if we are only interested in the values of the function close to a given point.

x y = f(x)

Slope = [ {a)

(a, fla))

“Close to” the point (a, f(a)), the tangent L(z) = f(a) + f'(a)(z — a) is a “good” approxi-
mation for y = f(x).



DEFINITIONS Linearization, Standard Linear Approximation
If f is differentiable at x = &, then the approximating function

L(x) = f(a) + f'(a)(x — a)
is the linearization of f at a. The approximation
flx) = L(x)

of f by L is the standard linear approximation of f at a. The point x = « is the
center of the approximation.

Example: Compute the linearisation of f(z) =1+ x at z = 0.

We have f(0) =1 and f'(z) = (1 +z)~/2 This gives f/(0) = 1, so

-0.1 0 0.1 0.2
Approximation True value | True value — approximation |
Vizz1+ % = 1.10 1.095445 <107
V105~ 1+ 9‘%’2 = 1.025 1.024695 <107
V1005 ~ 1+ %995 — 100250 1.002497 <107

2




Linearisations are used to simplify problems. For example if we are working on a problem
which involves the values taken by f(x) = 1/1 4+ 2 on some small interval I centered on z = 0,
then we can simplify our calculations and obtain an approximate solution by replacing f(x)
by L(x) =1+ 5 for all v € I.

Differentials

The difference between the true value of a function y = f(z) close to a point and its
linearization can be made more precise using ‘differentials’. When we write y = f(x) we
are thinking of x as an independent variable and y as a dependent variable. We introduce
two new variable: dx, which is an independent variable measuring the distance we move
from x; dy which is a dependent variable measuring the resultant change in the linearisation
of y = f(z) (and hence depends on both z and dx). The two new variables are called
differentials. The dependency of y on x and dz is given by the equation for the linearisation
of f(x) centered at z: L(zx + dz) = L(z) + f'(z)([v + dz] — dz). Since L(z) = f(z) and
L(z + dx) — L(x) = dy this gives:

Reading Assignment: read
Thomas’ Calculus, p. 167-168 about Differentials

Extreme values of functions

DEFINITIONS Absolute Maximum, Absolute Minimum

Let f be a function with domain D. Then f has an absolute maximum value on
D at a point ¢ if

flx) = f(e) for all x in D
and an absolute minimum value on D at ¢ if

fx) = fle) forall xin D.

These values are also called absolute extrema, or global extrema.

Example:
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=
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‘ H Domain ‘ abs. max. ‘ abs. min. ‘

(a) || (—o0,00) none 0, at 0
®) | 0.2 Lat2 | 0,at0
(c) (0,2] 4, at 2 none
(d) (0,2) none none

When the domain of f is a closed interval, the existence of a global maximum and minimum
is ensured by:

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, &], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, h]. That is, there are
numbers x; and x; in [a, &] with f(x;) = m, f(x;) = M,andm = f(x) = M for
every other x in [a, b] (Figure 4.3).
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Examples:

y=flx)

1
I
'M
1
x| ! s
: | x 1 | x
| b o b
1] . -
| Maximum and minimum
at endpoints
(xy, 1)
Maximum and minimum
at interior points
I
I
I
|
1
¥
I
I
I
| I
|1 I
x 1 I | T
a Xy b
Maximuim al inlerior point, Minimun al interior point,
minimum at endpoint maximum at endpoint

DEFINITIONS  Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

fx) = f(c) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

flx) = fle) for all x in some open interval containing c.

Absclute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.

No greater value of
[ nearby.

Local minimum
No smaller value

I
: : of f nearby.
Absolute minimum : :
No smaller value of ! | Local minimum |
f anywhere. Alsoa | I I No smaller value of |
local minimum. : : :j nearby. : :
1 1 1 | 1 > x
a ¢ e o b

Note: Absolute extrema are automatically local extrema, but the converse need not be true.



