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Continuity
Informally a function defined on an interval is continuous if we can sketch its graph in one
continuous motion without lifting our pen from the paper. To give a more precise definition
we first define what it means for a function to be continuous at a single point in its domain,
and to do this we must distinguish between different kinds of points in the domain.

Definition Let D ⊂ R and x ∈ D. Then:

• x is an interior point of D if we have x ∈ I for some open interval I = (a, b) ⊆ D;

• x is a left end-point (respectively right end-point of D) if x is not an interior point
of D and we have x ∈ I for some half-closed interval I = [x, b) ⊆ D (respectively
I = (a, x] ⊆ D);

• x is an isolated point of D if x is neither an interior point nor an end-point.

Example: LetD = [1, 2]∪(3, 4]∪{5}. Then D has one left end-point, 1; two right endpoints
2,4; one isolated point 5; and all other points in D are interior points.

We can now define continuity at a point:

Definition Let f be a function with domain D ⊂ R. Then:

• f is continuous at an interior point c of D if limx→c f(x) exists and is equal to f(c).

• f is continuous at a left end-point a of D if limx→a+ f(x) exists and is equal to f(a).

• f is continuous at a right end-point b of D if limx→b− f(x) exists and is equal to f(b).

• f is continuous at every isolated point of D.1

Example:f : [0, 4] → R

The function f is continuous at all points in [0, 4] except at x = 1, x = 2 and x = 4 since:

• limx→1 f(x) does not exist;

• limx→2 f(x) = 1 6= f(2);

• limx→4− f(x) = 1 6= f(4).

1In this module our domains will never have isolated points so this part of the definition will never be

used.
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We can also define ‘one-sided continuity’. For any (non-isolated) point c in the domain of
f we say that:

• f is right-continuous at c if lim
x→c+

f(x) = f(c);

• f is left-continuous at c if lim
x→c−

f(x) = f(c);

It follows that f is continuous at an interior point c in its domain if and only if it is both
right-continuous and left-continuous at c.

If a function f is not continuous at a point c ∈ R, we say that f is discontinuous at c. Note
that f is discontinuous at all points c which do not belong to its domain by definition.

Examples: Continuity and discontinuity at x = 0.

continuous not continuous jump discontinuity

infinite discontinuity oscillating discontinuity

Note We can easily repair the discontinuity at x = 0 in cases (b) and (c) be (re)defining
f(0) as in (a). There is no easy way to repair the discontinuity at x = 0 in (d), (e), and (f).
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The Limit Laws Theorem implies that an algebraic combination of two functions which are
both continuous at the same point c, will also be continuous at c.

Remark: It is easy to see that the functions f(x) = x, and g(x) = k for some constant
k, are continuous at c for all c ∈ R. We can now use the above properties of continuous
functions to deduce that all polynomial and rational functions are continuous at c for all
c ∈ R (provided the denominator of the rational function does not become zero at c). We
can also show that trigonometric functions are continuous.

Lemma 1 The functions sin x and cosx are continuous at c for all c ∈ R. The function

tanx is continuous at c for all c ∈ R \ {±π/2,±3π/2,±5π/2, . . .}.

Proof We have

lim
x→c

sin x = lim
h→0

sin(c+ h) [substituting h = x− c]

= lim
h→0

(sin c cosh+ cos c sin h)

= sin c lim
h→0

(cosh) + cos c lim
h→0

(sin h)

= sin c [since limh→0(cosh) = 1 and limh→0(sin h) = 0]

A similar proof works for cosx (Check this!). We can now deduce that tanx is continuous
at x = c whenever cos c 6= 0 by using tanx = sin x/ cosx.

We next state a result which says that compositions of continuous functions are continuous.
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Example: h(x) = sin(x3+cosx) is continuous at c for all c ∈ R. This follows since h = g◦f
where f(x) = x3+cosx and g(x) = sin x, and both f and g are continuous at c for all c ∈ R.

Definition A function f is continuous on an interval I if f is continuous at every point of
I. Similarly f is said to be a continuous function if f is continuous at every point of its
domain.

Example: We have seen that polynomial, rational and trigonometric functions are all
continuous functions.

Note that a continuous function need not be continuous at all points in R. This will only
occur if its domain is equal to R.
Example: f(x) = 1/x.

• f is a continuous function since it is continuous at every point of its domain.

• Nevertheless, f has a discontinuity at x = 0 since f is not defined at x = 0.

Example: Show that h(x) =

∣

∣

∣

∣

x sin x

x2 + 2

∣

∣

∣

∣

is continuous on (−∞,∞).

• Note that y = sin x is continuous on (−∞,∞).

• Deduce that f(x) =
x sin x

x2 + 2
is continuous on (−∞,∞).

• Show that g(x) = |x| is continuous on (−∞,∞).

• Deduce that h = g ◦ f is continuous on (−∞,∞).
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y =

∣

∣

∣

∣

x sin x

x2 + 2

∣

∣

∣

∣

Continuous extensions of functions

Example: f(x) = sinx

x

The function f is defined and is continuous at every point x ∈ R \ {0}. As lim
x→0

sin x

x
= 1, it

makes sense to define a new function F by putting

F (x) =

{

sinx

x
for x 6= 0

1 for x = 0

Then F will be defined and will be continuous at every point x ∈ R.

Definition Suppose f : D → R and that lim
x→c

f(x) = L for some c ∈ R \D. Define a new

function f : D ∪ {c} → R by putting

F (x) =

{

f(x) if x 6= c
L if x = c

Then F is said to be the continuous extension of f(x) to c. (Note that F is continuous at
c since we have limx→c F (x) = limx→c f(x) = L = F (c).

The Intermediate value theorem

This result tells us that whenever a continuous function takes on two values, it must take
on all the values in between.
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The geometrical interpretation of this theorem is that any horizontal line crossing the y-axis
between f(a) and f(b) will cross the graph of y = f(x) at least once over the interval [a, b].

Note that continuity is essential: if f is discontinuous at some point in the interval, then
the function may “jump” and miss some values.

Differentiation

Recall our discussion of average and instantaneous rates of change.

Example: Growth of fruit fly population

Basic idea:

• Determine the limit of the slopes of the secants2 QP as Q approaches P .

2In this context, a secant is a line joining two points of a curve.
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• Take this limit to be the instantaneous rate of change at P .

Example: Find the equation of the tangent to the parabola y = x2 at the point P = (2, 4).

• Choose a point Q = (2 + h, (2 + h)2) on the parabola a horizontal distance h 6= 0
away from P .

• The secant PQ has slope

∆y

∆x
=

(2 + h)2 − 22

(2 + h)− 2
=

4 + 4h+ h2 − 4

h
= 4 + h .

• As Q approaches P , h approaches 0. Hence

m = lim
h→0

∆y

∆x
= lim

h→0
(4 + h) = 4

is the parabola’s slope at P .

• The equation of the tangent through P is y = y1+m(x−x1) where P = (x1, y1) = (2, 4)
and m = 4. This gives y = 4 + 4(x− 2) = 4x− 4.

Summary:

This approach generalises to arbitrary curves and arbitrary points:

Definition The slope of the curve y = f(x) at the point P = (x0, y0) is the number

m = lim
h→0

f(x0 + h)− f(x0)

h

provided this limit exists. The tangent line to the curve at P is the line through P with
this slope.
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Example: Find slope and tangent to y = 1/x at x = a when a 6= 0

1. f(a) =
1

a
, f(a+ h) =

1

a+ h

2. slope:
m = lim

h→0

f(a+ h)− f(a)

h

= lim
h→0

1
a+h

− 1
a

h

= lim
h→0

a− (a + h)

h · a(a + h)

= lim
h→0

−1

a(a + h)
= − 1

a2

3. tangent line at (a, 1/a): y =
1

a
+

(

− 1

a2

)

(x− a) =
2

a
− x

a2
.
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Definition Let f : D → R. The derivative of f is the function f ′ whose value at a point
c ∈ D is given by

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

provided this limit exists. If f ′(c) does exist, then we say that f is differentiable at c. If
f ′(x) exists for all x ∈ D, then we say that the function f is differentiable.

We can obtain an alternative formula for f ′(x) by putting z = x+ h. Then z → x as h → 0
and we have

f ′(x) = lim
z→x

f(z)− f(x)

z − x
.

Alternative notations: We often write
df

dx
or

d

dx
f(x) for f ′(x). Furthermore, if y = f(x)

then we write y′ or
dy

dx
instead of f ′(x).3

Calculating a derivative is called differentiation (“derivation” is something else!).

Example: Differentiate from first principles f(x) =
x

x− 1
.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

x+h

x+h−1
− x

x−1

h

= lim
h→0

(x+ h)(x− 1)− x(x+ h− 1)

h(x+ h− 1)(x− 1)

= lim
h→0

−h

h(x+ h− 1)(x− 1)

= − 1

(x− 1)2

3The d

dx
notation for differentiation was introduced in the late seventeenth century by the German

mathematician Gottfried Wilhelm Liebniz and is referred to as Liebniz notation.
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Example: Differentiate f(x) =
√
x by using the alternative formula for derivatives.

f ′(x) = lim
z→x

f(z)− f(x)

z − x

= lim
z→x

√
z −√

x

z − x

= lim
z→x

√
z −√

x

(
√
z −√

x)(
√
z +

√
x)

= lim
z→x

1√
z +

√
x

=
1

2
√
x

One-sided derivatives: In analogy to one-sided limits, we can define one-sided derivatives:

lim
h→0+

f(x+ h)− f(x)

h
is the right-hand derivative at x

lim
h→0−

f(x+ h)− f(x)

h
is the left-hand derivative at x

Then:

f is differentiable at x if and only if both one-sided derivatives exist and are equal.

Example: Show that f(x) = |x| is not differentiable at x = 0. [2009 exam question]

• right-hand derivative at x = 0:

lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

|h|
h

= lim
h→0+

1 = 1

• left-hand derivative at x = 0:

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

(−1) = −1 .

Since the right-hand and left-hand derivatives differ the limit does not exist.

Theorem 1 If f has a derivative at x = c, then f is continuous at x = c.

Proof: Trick: For h 6= 0, we have

f(c+ h) = f(c) +
f(c+ h)− f(c)

h
h .

By assumption, lim
h→0

f(c+ h)− f(c)

h
= f ′(c). We also have lim

h→0
f(c) = f(c) and lim

h→0
h = 0.

Hence, by the Limit Laws,

lim
h→0

f(c+ h) = f(c) + f ′(c) · 0 = f(c) .
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Thus f is continuous at x = c. •

Caution: The converse of this theorem is false! Consider for example f(x) = |x|. This
function is continuous at x = 0 but is not differentiable at x = 0.
Note: The theorem does imply that if a function is discontinuous at x = c, then it is not
differentiable at x = c.

Rules for Differentiation

The following rules are useful for working out derivatives. We will prove one them. See
Thomas, Section 3.2, for proofs of the others.

Rule 1 (Derivative of a Constant Function) If f is a constant function, f(x) = c,
then f is differentiable and

df

dx
=

d

dx
(c) = 0 .

Rule 2 (Power Rule for Positive Integers) If f is a power function, f(x) = xn for

some n ∈ N, then f is differentiable and

d

dx
xn = nxn−1 .

Rule 3 (Constant Multiple Rule) If f is a differentiable function, and c is a constant,

then cf is differentiable and
d

dx
(cf) = c

df

dx
.

Rule 4 (Derivative Sum Rule) If u and v are differentiable functions, then u + v is

differentiable and

d

dx
(u+ v) =

du

dx
+

dv

dx
.

Example: Differentiate y = 3x4 + 2.

dy

dx
=

d

dx
(3x4 + 2)

=
d

dx
(3x4) +

d

dx
(2) (by rule 4)

= 3
d

dx
(x4) + 0 by rules 1,3)

= 3 · 4x3 (by rule 2)

= 12x3

Rule 5 (Derivative Product Rule) If u and v are differentiable functions, then uv is

differentiable and
d

dx
(uv) = u

dv

dx
+ v

du

dx
.
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Proof We have

u(x+ h)v(x+ h)− u(x)v(x)

h
=

u(x+ h)v(x+ h)− u(x+ h)v(x) + u(x+ h)v(x)− u(x)v(x)

h

=
u(x+ h)[v(x+ h)− v(x)]

h
+

v(x)[u(x+ h)− u(x)]

h

Since u and v are differentiable, limh→0
u(x+h)−u(x)

h
= du

dx
and limh→0

v(x+h)−v(x)
h

= dv

dx
. Since

u is differentiable, it is continuous and hence limh→0 u(x + h) = u(x). We also have
limh→0 u(x) = u(x). The Limit Laws now give

d

dx
(uv) = lim

h→0

u(x+ h)v(x+ h)− u(x)v(x)

h

= lim
h→0

u(x+ h) lim
h→0

v(x+ h)− v(x)

h
+ lim

h→0
v(x) lim

h→0

u(x+ h)− u(x)

h

= u(x)
dv

dx
+ v(x)

du

dx

•
Example: Differentiate y = (x2 + 1)(x3 + 3).
Let u = x2 + 1 and v = x3 + 3. Then u′ = 2x and v′ = 3x2. Hence

y′ = uv′ + vu′ = (x2 + 1)3x2 + 2x(x3 + 3) = 5x4 + 3x2 + 6x.

Rule 6 (Derivative Quotient Rule) If u and v are differentiable functions, then u/v is

differentiable and

d

dx

(u

v

)

=
v du

dx
− u dv

dx

v2
.

Example: Differentiate y =
t− 2

t2 + 1
.

Let u = t− 2 and v = t2 + 1. Then u′ = 1 and v′ = 2t. Hence

y′ =
1(t2 + 1)− (t− 2)2t

(t2 + 1)2
=

−t2 + 4t+ 1

(t2 + 1)2

Warning: (uv)′ 6= u′v′ and (u/v)′ 6= u′/v′.

Rule 7 (Power Rule for Negative Integers) If f(x) = xn for some negative integer n,
then f is differentiable and

d

dx
xn = nxn−1 .

Example:
d

dx

(

1

x11

)

=
d

dx
(x−11) = −11x−12 .

Higher-order derivatives

Definition Suppose f is differentiable function. If f ′ is also differentiable, then we call
f ′′ = (f ′)′ the second derivative of f . Similarly, if f ′′ is differentiable then we we call
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f ′′′ = (f ′′)′ the third derivative of f . More generally, if f is differentiable n times for some
n ∈ N then the n’th derivative, f (n), of f is defined recursively by putting f (0) = f , and

f (n) =
df (n−1)

dx

for n ≥ 1.

Example: Find the first four derivatives of f(x) = x3 and g(x) = x−2.

f ′(x) = 3x2 g′(x) = −2x−3

f ′′(x) = 6x g′′(x) = 6x−4

f ′′′(x) = 6 g′′′(x) = −24x−5

f (4)(x) = 0 g(4)(x) = 120x−6.
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