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Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one
continuous motion without lifting our pen from the paper. To give a more precise definition
we first define what it means for a function to be continuous at a single point in its domain,
and to do this we must distinguish between different kinds of points in the domain.

Definition Let D C R and z € D. Then:
e 1 is an interior point of D if we have x € I for some open interval I = (a,b) C D;

e x is a left end-point (respectively right end-point of D) if z is not an interior point
of D and we have z € I for some half-closed interval I = [z,b) C D (respectively
I = (a,z] C D);

e 1 is an isolated point of D if x is neither an interior point nor an end-point.

Example: Let D = [1,2]U(3,4]U{5}. Then D has one left end-point, 1; two right endpoints
2,4; one isolated point 5; and all other points in D are interior points.

We can now define continuity at a point:

Definition Let f be a function with domain D C R. Then:
e fis continuous at an interior point ¢ of D if lim, . f(z) exists and is equal to f(c).
e fis continuous at a left end-point a of D if lim, ,,+ f(x) exists and is equal to f(a).
e fis continuous at a right end-point b of D if lim, ;- f(z) exists and is equal to f(b).
e f is continuous at every isolated point of D.!

Example:f : [0,4] - R
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The function f is continuous at all points in [0,4] except at x = 1,2 = 2 and = = 4 since:
e lim, ,; f(x) does not exist;
o lim, ., f(x) =1+# f(2);
o lim, - f(z) =17 f(4).

Tn this module our domains will never have isolated points so this part of the definition will never be
used.



We can also define ‘one-sided continuity’. For any (non-isolated) point ¢ in the domain of
f we say that:

e f is right-continuous at ¢ if lim f(x) = f(c);

r—sct

o fis left-continuous at c if lim f(x) = f(c);

r—Cc—

It follows that f is continuous at an interior point ¢ in its domain if and only if it is both
right-continuous and left-continuous at c.

If a function f is not continuous at a point ¢ € R, we say that f is discontinuous at c. Note
that f is discontinuous at all points ¢ which do not belong to its domain by definition.

Examples: Continuity and discontinuity at x = 0.
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Note We can easily repair the discontinuity at x = 0 in cases (b) and (c) be (re)defining
f(0) as in (a). There is no easy way to repair the discontinuity at x = 0 in (d), (e), and (f).



The Limit Laws Theorem implies that an algebraic combination of two functions which are
both continuous at the same point ¢, will also be continuous at c.

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = ¢.

1. Sums: f+g

2. Differences: o g

3. Products: f-g

4. Constant multiples: k- f, for any number &

5. Quotients: f/g provided g(c) # 0

6. Powers: /7, provided it is defined on an open interval

containing ¢, where r and s are integers

Remark: It is easy to see that the functions f(z) = x, and g(z) = k for some constant
k, are continuous at ¢ for all ¢ € R. We can now use the above properties of continuous
functions to deduce that all polynomial and rational functions are continuous at ¢ for all
¢ € R (provided the denominator of the rational function does not become zero at c¢). We
can also show that trigonometric functions are continuous.

Lemma 1 The functions sinx and cosx are continuous at ¢ for all ¢ € R. The function
tanx is continuous at ¢ for all c € R\ {£n/2,+37w/2, £57/2,...}.

Proof We have

limsinz = limsin(c+ h) [substituting h = x — ]
T—cC h—0

= lim(sinccosh + coscsinh)
h—0
= sinclim(cosh) + cosclim(sin h)
h—0 h—0
= sinc [since limy,_,(cos h) = 1 and limy,_,¢(sinh) = 0]

A similar proof works for cosz (Check this!). We can now deduce that tanx is continuous
at x = ¢ whenever cosc # 0 by using tanx = sinx/ cos x.

We next state a result which says that compositions of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g ° [ is
continuous at c.
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Example: h(z) = sin(z®+cos z) is continuous at ¢ for all ¢ € R. This follows since h = go f
where f(z) = 23+ cosz and g(x) = sinx, and both f and g are continuous at c for all ¢ € R.

Definition A function f is continuous on an interval I if f is continuous at every point of
I. Similarly f is said to be a continuous function if f is continuous at every point of its
domain.

Example: We have seen that polynomial, rational and trigonometric functions are all
continuous functions.

Note that a continuous function need not be continuous at all points in R. This will only
occur if its domain is equal to R.
Example: f(z)=1/z.

e f is a continuous function since it is continuous at every point of its domain.
e Nevertheless, f has a discontinuity at x = 0 since f is not defined at z = 0.

TSN T
Example: Show that h(z) = | —=——| is continuous on (—o00, 00).

2 +

Note that y = sinz is continuous on (—o0, 00).

rsinw
Deduce that f(r) = — 9 is continuous on (—00, 00).
x

Show that g(x) = |z| is continuous on (—o0, 00).

Deduce that h = g o f is continuous on (—o00, 00).
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Continuous extensions of functions

Example: f(z) = 2%

xT

y = sin 8 {radians)
i)
L] | -
~37 22— T2 3
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sin x

The function f is defined and is continuous at every point z € R\ {0}. As hl’r(l) =1,it
T—

makes sense to define a new function F' by putting

B % for x # 0
F(x)—{ 1 forx =0

Then F will be defined and will be continuous at every point x € R.
Definition Suppose f : D — R and that lim f(z) = L for some ¢ € R\ D. Define a new
Tr—rcC
function f: DU {c} — R by putting
| fle)  ifx#c
F(z) = { L ifr=c

Then F is said to be the continuous extension of f(x) to c. (Note that F' is continuous at
¢ since we have lim,_,. F(x) = lim,_,. f(x) = L = F(c).

The Intermediate value theorem

This result tells us that whenever a continuous function takes on two values, it must take
on all the values in between.



THEOREM 11  The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if yg is any value between f{a) and
f(b), then yy = f(c) for some ¢ in [a, b].

fiby|-—

Yo
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The geometrical interpretation of this theorem is that any horizontal line crossing the y-axis
between f(a) and f(b) will cross the graph of y = f(x) at least once over the interval [a, b].

Note that continuity is essential: if f is discontinuous at some point in the interval, then

the function may “jump” and miss some values.

Differentiation

Recall our discussion of average and instantaneous rates of change.

Example: Growth of fruit fly population

Slope of PQ = Ap /At

0 (flies /day)

(45, 340) H ~ 8.6
(40.330) =0~ 106
(35, 310) w ~ 133
(0.265) 2530~ 164
Basic idea:

MNumber of flies

350
300
250

(45, 340)

10 ?"'.II 20 30
A40) Time (days)

40 50

e Determine the limit of the slopes of the secants? QP as () approaches P.

2In this context, a secant is a line joining two points of a curve.



e Take this limit to be the instantaneous rate of change at P.

Example: Find the equation of the tangent to the parabola y = 2% at the point P = (2,4).

e Choose a point @ = (2+ h, (2 + h)?) on the parabola a horizontal distance h # 0
away from P.

e The secant P( has slope

Ay (2+h)?>—22 444h+h’—4

_ _ —d4h.
Ar (2+h) 2 I o

e As @ approaches P, h approaches 0. Hence

. Ay
m =l R~y = i+ h) =4

is the parabola’s slope at P.

e The equation of the tangent through P isy = y;+m(x—xy) where P = (z1,11) = (2,4)
and m = 4. This gives y =4 + 4(x — 2) = 4o — 4.

Summary:

2+h*-4

=h + 4.
h

Secant slope is

NOT T SCALE

This approach generalises to arbitrary curves and arbitrary points:

Definition The slope of the curve y = f(z) at the point P = (¢, yo) is the number

m — lim f(zo +h) — f(xo)
h—0 h

provided this limit exists. The tangent line to the curve at P is the line through P with
this slope.



Finding the Tangent to the Curve y = f(x) at (xo, yo)
1. Calculate f(xq) and f(xy + h).

2. Calculate the slope
flxo + 1) — flxy)

h—0 h

m =

3. If the limit exists, find the tangent line as

y =y + mlx — xq).

Example: Find slope and tangent to y = 1/x at x = a when a # 0

1
a+h

1. fla) =~ fla+h) =

2. slope: _
et h) = fla)
h—0
1
a+h

_1
= lim 2
h—0
lim &= (@)
h—0 h - a(a + h)

—1 1

1 1 2
3. tangent line at (a,1/a): y = — + (——> (r—a)=~-—=.

: <
slope is ——

VAl
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Definition Let f : D — R. The derivative of f is the function f’ whose value at a point
c € D is given by

_fle+h) = f(o)

/ —_—

file) = Jim h

provided this limit exists. If f’(c) does exist, then we say that f is differentiable at c. If
f'(z) exists for all x € D, then we say that the function f is differentiable.

We can obtain an alternative formula for f’(z) by putting z = z + h. Then z — z as h — 0
and we have

vy g f(2) = f(@)
flw) = lim ==——"—
¥y = flx)

Secant slope is

f(z) — flx)
Q(z f(z) .
Pix, f(x)) Sz} — flx)

SR
T

|1—,f! =7 =03x =

| |

I |
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Alternative notations: We often write 3—f or dif(x) for f'(z). Furthermore, if y = f(z)
x x

d
then we write ¢’ or d—y instead of f'(z).?
x
Calculating a derivative is called differentiation (“derivation” is something else!).

T
Example: Differentiate from first principles f(z) =

x—1

x+h
_ }llll)% a:-i—h—lh r—1
. () —-1)—2(r+h-1)
R = R TP
i —h
= A h= D =1)
1
T (-1

3The % notation for differentiation was introduced in the late seventeenth century by the German

mathematician Gottfried Wilhelm Liebniz and is referred to as Liebniz notation.
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Example: Differentiate f(x) = v/x by using the alternative formula for derivatives.

f'(z) = lim

= lim

NN NN

lim fle+h) = fz) is the right-hand derivative at x
h—07+ h
lim fle+h) = /() is the left-hand derivative at x
h—0~ h

Then:

‘ f is differentiable at x if and only if both one-sided derivatives exist and are equal. ‘

Example: Show that f(x) = |z| is not differentiable at = 0. [2009 exam question]

e right-hand derivative at x = 0O:

lim [0+ A= o _ lim Il _ lim 1 =
h—0t h h—0t+ h h—0t
e left-hand derivative at z = 0:
. |0+ h|— |0 . |A :
lim ——— = lim — =1 —1)=-1.
dm = A = (1)

Since the right-hand and left-hand derivatives differ the limit does not exist.

Theorem 1 If f has a deriwative at x = ¢, then f is continuous at x = c.

Proof: Trick: For h # 0, we have
flet+h)—flc)

fle+h) = f(c) + . h .
By assumption, }lllil(lj Jlet hf)L — /) = f'(c). We also have }lgr(l) f(c) = f(c) and }lliil%h = 0.

Hence, by the Limit Laws,

lim f(c+h) = /() + f'(c) 0= F(c)
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Thus f is continuous at x = c. °

Caution: The converse of this theorem is false! Consider for example f(x) = |z|. This
function is continuous at x = 0 but is not differentiable at x = 0.

Note: The theorem does imply that if a function is discontinuous at x = ¢, then it is not
differentiable at x = c.

Rules for Differentiation

The following rules are useful for working out derivatives. We will prove one them. See
Thomas, Section 3.2, for proofs of the others.

Rule 1 (Derivative of a Constant Function) If f is a constant function, f(x) = c,

then f s differentiable and
d d
g _ —(c) =0.

de  dx
Rule 2 (Power Rule for Positive Integers) If f is a power function, f(x) = z™ for
somen € N, then f is differentiable and

Rule 3 (Constant Multiple Rule) If f is a differentiable function, and c is a constant,
then cf is differentiable and

—(cf) =c—.

Rule 4 (Derivative Sum Rule) If u and v are differentiable functions, then u + v is

differentiable and
d du  dv

Example: Differentiate y = 32* + 2.

dy d 4
> _ 2 )
dx dx (327 +2)

= —(32") +—(2) (by rule 4)

d
= 3%(954) +0 by rules 1,3)

3 42® (by rule 2)
122

Rule 5 (Derivative Product Rule) If u and v are differentiable functions, then uv is

differentiable and
d dv n du
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Proof We have

u(x + h)v(z + h) — u(z)v(x) _ u(x + h)v(z + h) —u(z + h)v(z) + ul(z + h)v(z) — u(x)v(x)
h h
_ w(x + h)[v(z+ h) —v(z)] N v(z)[u(z + h) — u(z)]
h h

. . . . h)— . n— .
Since v and v are differentiable, limy,_, M = Z—Z and limy,_, ”(”7,11’(“”) = g—;. Since

u is differentiable, it is continuous and hence limj, ,ou(x + h) = wu(x). We also have
limy, o u(x) = u(z). The Limit Laws now give

4 ) = i MEFREHR) = u(@)o(w)
dx h—0 h
— dimu(e + ) lim CETTUD) ) gy AR (o)
h—0 h—0 h h—0 h—0
dv du

Example: Differentiate y = (22 + 1)(z® + 3).
Let u=2?>4+1and v = 2% + 3. Then v/ = 2z and v/ = 32%. Hence

y = w' +ou = (2% + 1)32° + 22(2* + 3) = 52 + 327 + 62.

Rule 6 (Derivative Quotient Rule) Ifu and v are differentiable functions, then u/v is
differentiable and

du dv
4 <E> _ V4 Y
dx \v v2 ’
E le: Differentiat =2
xXample: 1rrerentiate = ——.
P 4 241

Let u=t—2andv=1t>+1. Then v’ = 1 and v' = 2¢. Hence
, 1P+ —(t—2)2t P+ 4t+1

GESYE GESYE
Warning: (uv) # u'v" and (u/v)" # o' /v

Rule 7 (Power Rule for Negative Integers) If f(x) = x" for some negative integer n,
then f s differentiable and

1
Example: 4 (—) = i(x_ll) = 11z 1%,

dr \ zi! dz

Higher-order derivatives

Definition Suppose [ is differentiable function. If f” is also differentiable, then we call
f" = (f') the second derivative of f. Similarly, if f” is differentiable then we we call
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f" = (f") the third derivative of f. More generally, if f is differentiable n times for some
n € N then the n'th derivative, f™, of f is defined recursively by putting f(©) = f, and

df(nfl)

(n) _
/ dx

for n > 1.

Example: Find the first four derivatives of f(z) = 2® and g(z) = 272

f(z) = 32° J(z) = —227*
f'(x) =6z g

f"(x) =6 g"(x) = —2427°
fY(z) =0 g (z) = 12027°.
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