MTH4100 Calculus I

Bill Jackson School of Mathematical Sciences QMUL

Week 4, Semester 1, 2012

One-sided limits

For a function f to have the limit L as x approaches c, f(x) must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of f(x) as x approaches c from only one of the two sides.

One-sided limits

For a function f to have the limit L as x approaches c, f(x) must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of f(x) as x approaches c from only one of the two sides.

Informal Definition L is a left-hand limit of f at c if f(x) becomes arbitrarily close to L as x approaches c from below. We write

$$\lim_{x\to c^-} f(x) = L.$$

One-sided limits

For a function f to have the limit L as x approaches c, f(x) must become arbitrarily close to L as x approaches c from both sides. But we can also consider the behavior of f(x) as x approaches c from only one of the two sides.

Informal Definition L is a left-hand limit of f at c if f(x) becomes arbitrarily close to L as x approaches c from below. We write

$$\lim_{x\to c^-} f(x) = L.$$

Similarly, M is a right-hand limit of f at c if f(x) becomes arbitrarily close to M as x approaches c from above. We write

$$\lim_{x\to c^+} f(x) = M.$$

Example

$$f(x) = \frac{x}{|x|}.$$

- $\lim_{x\to 0^+} f(x) = 1$ $\lim_{x\to 0^-} f(x) = -1$
- $\lim_{x\to 0} f(x)$ does not exist

Example

С	$\lim_{x\to c^-} f(x)$	$\lim_{x\to c^+} f(x)$	$\lim_{x\to c} f(x)$
0	cannot exist	1	cannot exist
1	0	1	does not exist
2	1	1	1
3	2	2	2
4	1	cannot exist	cannot exist

Results

Theorem

A function f has a limit at c if and only if it has both a left-hand and right-hand limit at c and these two limits are equal, i.e.

$$\lim_{x\to c} f(x) = L \text{ if and only if } \lim_{x\to c^-} f(x) = L \text{ and } \lim_{x\to c^+} f(x) = L$$

Results

Theorem

A function f has a limit at c if and only if it has both a left-hand and right-hand limit at c and these two limits are equal, i.e.

$$\lim_{x\to c} f(x) = L \text{ if and only if } \lim_{x\to c^-} f(x) = L \text{ and } \lim_{x\to c^+} f(x) = L$$

The Limit Law Theorem and results about limits of polynomials and rational functions also hold for one-sided limits.

The Sandwich Theorem

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \le f(x) \le h(x)$ for all $x \in I \setminus \{c\}$ and that $\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$. Then

$$\lim_{x\to c} f(x) = L.$$

The Sandwich Theorem

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \le f(x) \le h(x)$ for all $x \in I \setminus \{c\}$ and that $\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$. Then

$$\lim_{x\to c} f(x) = L.$$

A similar result holds for one-sided limits.

The Sandwich Theorem

Theorem (The Sandwich Theorem)

Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \le f(x) \le h(x)$ for all $x \in I \setminus \{c\}$ and that $\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$. Then

$$\lim_{x\to c} f(x) = L.$$

A similar result holds for one-sided limits.

The sandwich theorem can be used to calculate the limit of a complicated function when its values are 'sandwiched between' those of two simpler functions. In particular we can use it to determine limits of trigonometric functions.

Limits of trigonometric functions

Lemma

 $\lim_{\theta \to 0} \sin \theta = 0$ and $\lim_{\theta \to 0} \cos \theta = 1$.

Limits of trigonometric functions

Lemma

 $\lim_{\theta \to 0} \sin \theta = 0$ and $\lim_{\theta \to 0} \cos \theta = 1$.

Theorem

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Limits of trigonometric functions

Lemma

 $\lim_{\theta \to 0} \sin \theta = 0$ and $\lim_{\theta \to 0} \cos \theta = 1$.

Theorem

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Example Determine $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta}$.

Limits at infinity

Example

We would like to describe the behavior of f(x) as |x| gets very large.

Limits at infinity

Informal definition We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x\to\infty}f(x)=L$$

if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L. Similarly, we say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x\to-\infty}f(x)=L$$

if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

Limits at infinity

Informal definition We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x\to\infty}f(x)=L$$

if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L. Similarly, we say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x\to-\infty}f(x)=L$$

if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

Examples:

$$\lim_{x \to \infty} k = k = \lim_{x \to -\infty} k$$

and

$$\lim_{x \to \infty} \frac{1}{x} = 0 = \lim_{x \to -\infty} \frac{1}{x}.$$

Limit Laws

Theorem (Limit laws as x approaches infinity)

Suppose that L, M are real numbers, and f and g are functions such that $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} g(x) = M$. Then

- Sum Rule: $\lim_{x \to \infty} (f(x) + g(x)) = L + M$ The limit of the sum of two functions is the sum of their limits.
- ② Difference Rule: $\lim_{x \to \infty} (f(x) g(x)) = L M$
- **③** Constant Multiple Rule: $\lim_{x\to\infty} (kf(x)) = kL$ for any constant $k \in \mathbb{R}$.
- Product Rule: $\lim_{x \to \infty} (f(x)g(x)) = LM$
- **3** Quotient Rule: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{L}{M}$ when $M \neq 0$
- Power Rule: $\lim_{x\to\infty} (f(x))^{r/s} = L^{r/s}$ for any integers r, s such that $L^{r/s}$ is a real number.

Limits for f(x) as x approaches $\pm \infty$ give rise to 'horizontal asymptotes'.

DEFINITION Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \qquad \text{or} \qquad \lim_{x \to -\infty} f(x) = b.$$

Example

We have

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

This tells us that the graph of y=1/x approaches the line y=0 as |x| becomes very large. Thus the line y=0 is a horizontal asymptote of the graph.

Example Calculate the horizontal asymptote(s) for the graph of $y = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

Example Calculate the horizontal asymptote(s) for the graph of $y = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

The graph of f will have the line y = 5/3 as a horizontal asymptote on both the left and the right.

Example Calculate the horizontal asymptote(s) for the graph of $y = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

The graph of f will have the line y = 5/3 as a horizontal asymptote on both the left and the right.

Example Calculate the horizontal asymptote(s) for the graph of $y = \frac{5x^2 + 8x - 3}{3x^2 + 2}$.

The graph of f will have the line y = 5/3 as a horizontal asymptote on both the left and the right.

A similar approach will give us the horizontal asymptotes of any rational function in which the degree of the numerator is less than or equal to the degree of the denominator: we divide both the numerator and denominator by the largest power of x appearing in the denominator.

How does a rational function f(x) = p(x)/q(x) behave as |x| gets large when the degree of p(x) is one greater than the degree of q(x)?

How does a rational function f(x) = p(x)/q(x) behave as |x| gets large when the degree of p(x) is one greater than the degree of q(x)?

Example: Consider $f(x) = \frac{2x^2-3}{7x+4}$.

How does a rational function f(x) = p(x)/q(x) behave as |x| gets large when the degree of p(x) is one greater than the degree of q(x)?

Example: Consider $f(x) = \frac{2x^2-3}{7x+4}$.

The graph of f(x) will approach the line $y = \frac{2}{7}x - \frac{8}{49}$ as |x| gets very large.

How does a rational function f(x) = p(x)/q(x) behave as |x| gets large when the degree of p(x) is one greater than the degree of q(x)?

Example: Consider $f(x) = \frac{2x^2 - 3}{7x + 4}$.

The graph of f(x) will approach the line $y = \frac{2}{7}x - \frac{8}{49}$ as |x| gets very large.

In general, if a rational function f(x) = p(x)/q(x) has the degree of p(x) one greater than the degree of q(x), then polynomial division gives

$$f(x) = ax + b + r(x)$$
 with $\lim_{x \to \infty} r(x) = 0 = \lim_{x \to -\infty} r(x)$

In this case the line y = ax + b is said to be an *oblique* (or slanted) asymptote of f(x).

Infinite limits - Example

What is the behaviour of $f(x) = \frac{1}{x^2}$ near x = 0?

Infinite limits

Informal definition We say that f(x) approaches infinity as x approaches x_0 and write

$$\lim_{x\to x_0} f(x) = \infty$$

if the values of f(x) grow without bound as x approaches x_0 , eventually reaching and surpassing every positive real number.

Infinite limits

Informal definition We say that f(x) approaches infinity as x approaches x_0 and write

$$\lim_{x\to x_0} f(x) = \infty$$

if the values of f(x) grow without bound as x approaches x_0 , eventually reaching and surpassing every positive real number. Similarly, we say that f(x) approaches negative infinity as x approaches x_0 and write

$$\lim_{x\to x_0} f(x) = -\infty$$

if the values of f(x) decrease without bound as x approaches x_0 , eventually reaching and surpassing every negative real number.

Infinite limits - Example continued

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

as the values of $1/x^2$ are positive and become arbitrarily large as x approaches 0 from the right or the left.

One sided infinite limits - Example

$$f(x) = 1/x$$

We say that f(x) approaches infinity as x approaches 0 from the right and write $\lim_{x\to 0^+}\frac{1}{x}=\infty$.

One sided infinite limits - Example

$$f(x) = 1/x$$

We say that f(x) approaches infinity as x approaches 0 from the right and write $\lim_{x\to 0^+}\frac{1}{x}=\infty$.

Similarly, we say that f(x) approaches minus infinity as x approaches 0 from the left and write $\lim_{x\to 0^-}\frac{1}{x}=-\infty$.

Vertical asymptotes

Infinite limits give rise to 'vertical asymptotes' in the graph of a function:

DEFINITION Vertical Asymptote

A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

$$\lim_{x \to a^{+}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{-}} f(x) = \pm \infty.$$

Since $\lim_{x\to 0^+}\frac{1}{x}=\infty$ and $\lim_{x\to 0^-}\frac{1}{x}=-\infty$, the graph of y=1/x approaches the line x=0 as x approaches 0, and this line is a vertical asymptote of the graph.

Since $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$, the graph of y=1/x approaches the line x=0 as x approaches 0, and this line is a vertical asymptote of the graph.

The graph of y=1/x has two asymptotes: the line y=0 is a horizontal asymptote and the line x=0 is a vertical asymptote.

Find the asymptotes of

$$f(x)=-\frac{8}{x^2-4}.$$

Find the asymptotes of

$$f(x)=-\frac{8}{x^2-4}.$$

Find the asymptotes of $f(x) = \frac{x^2 - 3}{2x - 4}$.

Find the asymptotes of $f(x) = \frac{x^2 - 3}{2x - 4}$.

We say that the term $\frac{x}{2} + 1$ dominates f(x) when |x| is large and that the term $\frac{1}{2x-4}$ dominates f(x) when x is close to 2.

Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain.

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

• x is an *interior point* of D if we have $x \in I$ for some open interval $I = (a, b) \subseteq D$;

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an *interior point* of D if we have $x \in I$ for some open interval $I = (a, b) \subseteq D$;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I = [x, b) \subseteq D$, respectively $I = (a, x] \subseteq D$;

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an *interior point* of D if we have $x \in I$ for some open interval $I = (a, b) \subseteq D$;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I = [x, b) \subseteq D$, respectively $I = (a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.

Definition Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an *interior point* of D if we have $x \in I$ for some open interval $I = (a, b) \subseteq D$;
- x is a *left end-point*, respectively *right end-point*, of D if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I = [x, b) \subseteq D$, respectively $I = (a, x] \subseteq D$;
- x is an isolated point of D if x is neither an interior point nor an end-point.

Example: Let $D = [1,2] \cup (3,4] \cup \{5\}$. Then D has one left end-point, 1; two right endpoints 2,4; one isolated point 5; and all other points in D are interior points.

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

• f is continuous at an interior point c of D if $\lim_{x\to c} f(x)$ exists and is equal to f(c).

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim_{x\to c} f(x)$ exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim_{x\to c} f(x)$ exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).
- f is continuous at a right end-point b of D if $\lim_{x\to b^-} f(x)$ exists and is equal to f(b).

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim_{x\to c} f(x)$ exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).
- f is continuous at a right end-point b of D if $\lim_{x\to b^-} f(x)$ exists and is equal to f(b).
- f is continuous at all isolated point of D.

Example

The function f is continuous at all points in [0,4] except at x=1, x=2 and x=4.