

MTH4100 Calculus I

Lecture notes for Week 4

Thomas' Calculus, Sections 2.4 to 2.6

Prof Bill Jackson

School of Mathematical Sciences Queen Mary University of London

Autumn 2012

One-sided limits

For a function f to have the limit L as x approaches c, f(x) must become arbitrarily close to L as x approaches c from *both* sides. But we can also consider the behavior of f(x) as xapproaches c from only one of the two sides.

Informal Definition We say that *L* is a left-hand limit of f at c if f(x) becomes arbitrarily close to *L* as x approaches c from below and write

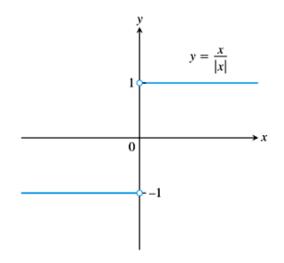
$$\lim_{x \to c^-} f(x) = L$$

Similarly, we say that M is a right-hand limit of f at c if f(x) becomes arbitrarily close to M as x approaches c from above and write

$$\lim_{x \to c^+} f(x) = M$$

The symbol $x \to c^+$ means that we only consider values of x greater than c. The symbol $x \to c^-$ means that we only consider values of x less than c.

Example:



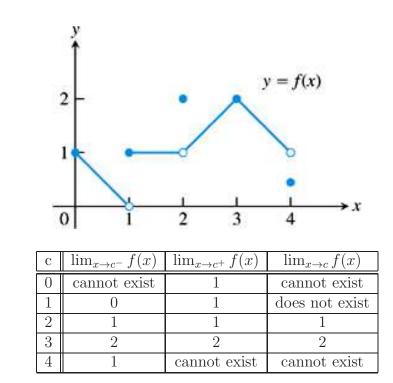
- $\lim_{x \to 0^+} f(x) = 1$
- $\lim_{x \to 0^{-}} f(x) = -1$
- $\lim_{x\to 0} f(x)$ does not exist

Theorem 1 A function f has a limit at c if and only if it has both a left-hand and right-hand limit at c and these two limits are equal, i.e.

$$\lim_{x \to c} f(x) = L \text{ if and only if } \lim_{x \to c^-} f(x) = L \text{ and } \lim_{x \to c^+} f(x) = L$$

The Limit Law Theorem and results about limits of polynomials and rational functions all hold for one-sided limits.

Example:



The 'cannot exist' entries follow because f is not defined in a suitable open interval for us to be able to apply the definition for the corresponding limit. For example the definition of limit at x = 0 requires f to be defined on an open interval containing 0 (except possibly at 0 itself). This is not the case since f(x) is not defined when x < 0.

The Sandwich Theorem and limits of trigonometric functions

Theorem 2 (The Sandwich Theorem) Suppose that f, g, h are functions defined on an open interval I containing c (except possibly at c itself). Suppose further that $g(x) \leq f(x) \leq h(x)$ for all $x \in I \setminus \{c\}$ and that $\lim_{x\to c} g(x) = L = \lim_{x\to c} h(x)$. Then $\lim_{x\to c} f(x) = L$.

A similar result holds for one-sided limits.

The sandwich theorem can be used to calculate the limit of a complicated function when its values are 'sandwiched between' those of two simpler functions. In particular we can use it to determine limits of trigonometric functions.

Corollary 1

$$\lim_{\theta \to 0} \sin \theta = 0 \ and \ \lim_{\theta \to 0} \cos \theta = 1.$$

Proof These limits follow from the sandwich theorem using the facts that

$$-|\theta| \le \sin \theta \le |\theta|$$

and

$$-|\theta| \le 1 - \cos\theta \le |\theta|$$

for all $\theta \in \mathbb{R}$, see Thomas' Calculus, page 53, Example 11.

Corollary 2

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Proof We can use the one sided version of the Sandwich Theorem, Corollary 1 and the fact that

$$\cos\theta \le \frac{\sin\theta}{\theta} \le 1$$

for all $\theta \in (0, \pi/2)$ to deduce that

$$\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1.$$

The fact that $\frac{\sin\theta}{\theta}$ is an even function of θ now implies that we also have $\lim_{\theta\to 0^-} \frac{\sin\theta}{\theta} = 1$. Theorem 1 now gives

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

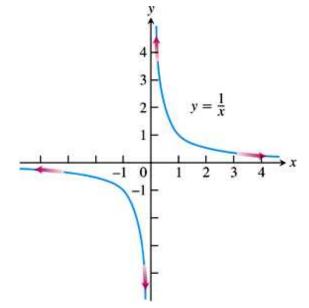
See Thomas' Calculus, page 70, Theorem 7 for more details.

Example: Compute $\lim_{h\to 0} \frac{\cos h - 1}{h}$. We have

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{-2\sin^2(h/2)}{h} \quad [\text{since } \sin^2(h/2) = (1 - \cos h)/2]$$
$$= \lim_{h \to 0} -\frac{\sin(h/2)}{h/2} \sin(h/2)$$
$$= \lim_{\theta \to 0} -\frac{\sin \theta}{\theta} \sin \theta \quad [\text{by substituting } \theta = h/2]$$
$$= -1 \cdot 0 = 0 \quad [\text{by Corollaries 1 and 2 and the Limit Laws}]$$

Limits at infinity and asymptotes

Example:



We would like to describe the behavior of f(x) as |x| gets very large.

Informal definition We say that f(x) has the limit L as x approaches infinity and write

$$\lim_{x \to \infty} f(x) = L$$

if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L. Similarly, we say that f(x) has the limit L as x approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

Examples:

and

$$\lim_{x \to \infty} \frac{1}{x} = 0 = \lim_{x \to -\infty} \frac{1}{x}.$$

 $\lim k = k = \lim k$

The Limit Laws Theorem remains valid if we replace $\lim_{x\to c}$ by $\lim_{x\to\infty}$ or $\lim_{x\to-\infty}$. For example:

Theorem 3 (Limit laws as x approaches infinity) Suppose that L, M are real numbers, and f and g are functions such that $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} g(x) = M$. Then

- 1. Sum Rule: $\lim_{x \to \infty} (f(x) + g(x)) = L + M$ The limit of the sum of two functions is the sum of their limits.
- 2. Difference Rule: $\lim_{x\to\infty} (f(x) g(x)) = L M$
- 3. Constant Multiple Rule: $\lim_{x \to \infty} (kf(x)) = kL$ for any constant $k \in \mathbb{R}$.
- 4. Product Rule: $\lim_{x \to \infty} (f(x)g(x)) = LM$
- 5. Quotient Rule: $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{L}{M}$ when $M \neq 0$

6. Power Rule: $\lim_{x \to \infty} (f(x))^{r/s} = L^{r/s}$ for any integers r, s such that $L^{r/s}$ is a real number.

Example:

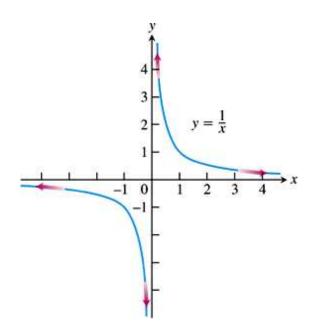
$$\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x} = 5 + 0 = 5.$$

Limits for f(x) as x approaches $\pm \infty$ give rise to 'horizontal asymptotes'.

DEFINITION Horizontal Asymptote A line y = b is a horizontal asymptote of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

Example:



We have

$$\lim_{x \to \infty} \frac{1}{x} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

This tells us that the graph of y = 1/x approaches the line y = 0 as |x| becomes very large. Thus the line y = 0 is a horizontal asymptote of the graph.

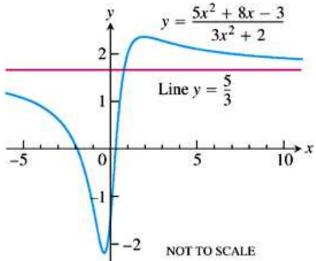
Example: Calculate the horizontal asymptote(s) for the graph of $y = \frac{5x^2+8x-3}{3x^2+2}$. We have:

$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{x^2(5 + 8/x - 3/x^2)}{x^2(3 + 2/x^2)} = \lim_{x \to \infty} \frac{5 + 8/x - 3/x^2}{3 + 2/x^2} = \frac{5}{3}$$

Similarly

$$\lim_{x \to -\infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \frac{5}{3}$$

Thus the graph of f has the line y = 5/3 as a horizontal asymptote on both the left and the right.



A similar approach will give us the horizontal asymptotes of any rational function in which the degree of the numerator is less than or equal to the degree of the denominator: we divide both the numerator and denominator by the largest power of x appearing in the denominator.

What happens if the degree of the polynomial in the numerator is one greater than that in the denominator?

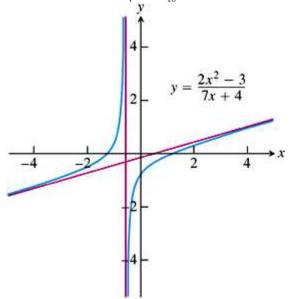
Example: Consider $f(x) = \frac{2x^2-3}{7x+4}$. We have

$$f(x) = \frac{2x^2 - 3}{7x + 4} = \frac{2}{7}x - \frac{8}{49} - \frac{115}{49(7x + 4)}$$

for all $x \neq -4/7$. Since

$$\lim_{x \to \infty} \frac{-115}{49(7x+4)} = 0 = \lim_{x \to -\infty} \frac{-115}{49(7x+4)}$$

the graph of f(x) approaches the line $y = \frac{2}{7}x - \frac{8}{49}$ as |x| gets very large.



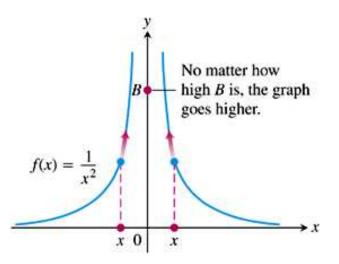
In general, if a rational function f(x) = p(x)/q(x) has the degree of p(x) one greater than the degree of q(x), then polynomial division gives

$$f(x) = ax + b + r(x)$$
 with $\lim_{x \to \pm \infty} r(x) = 0$

In this case the line y = ax + b is said to be an *oblique (or slanted) asymptote* of f(x). In the above example, the line $y = \frac{2}{7}x - \frac{8}{49}$ is an oblique asymptote of f(x).

Infinite limits and vertical asymptotes

Example: What is the behaviour of $f(x) = \frac{1}{x^2}$ near x = 0?



Informal definition We say that f(x) approaches infinity as x approaches x_0 and write

$$\lim_{x \to x_0} f(x) = \infty$$

if the values of f(x) grow without bound as x approaches x_0 , eventually reaching and surpassing every positive real number. Similarly, we say that f(x) approaches negative infinity as x approaches x_0 and write

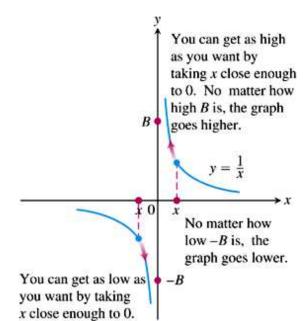
$$\lim_{x \to x_0} f(x) = -\infty$$

if the values of f(x) decrease without bound as x approaches x_0 , eventually reaching and surpassing every negative real number.

In the above example, we have

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

as the values of $1/x^2$ are positive and become arbitrarily large as x approaches 0 from the right or the left.



We say that f(x) approaches ∞ as x approaches 0 from the right and write

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

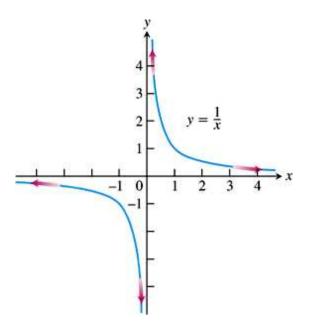
Similarly, we say that f(x) approaches $-\infty$ as x approaches 0 from the left and write

$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

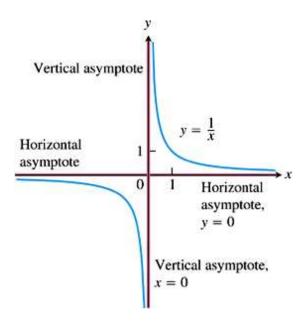
Infinite limits give rise to 'vertical asymptotes' in the graph of a function:

DEFINITION Vertical Asymptote A line x = a is a vertical asymptote of the graph of a function y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$

Example:



Since $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$, the graph of y = 1/x approaches the line x = 0 as x approaches 0, and this line is a vertical asymptote of the graph. **Summary** The graph of y = 1/x has two asymptotes: the line y = 0 is a horizontal asymptote and the line x = 0 is a vertical asymptote.



Example: Find the asymptotes of

$$f(x) = -\frac{8}{x^2 - 4}.$$

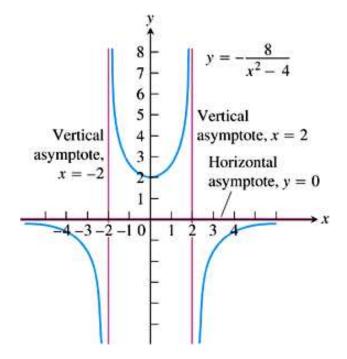
We determine the behaviour of f(x) as $x \to \pm \infty$ and as $x \to \pm 2$. (Why?) We have:

(a)
$$\lim_{x \to \infty} f(x) = 0 = \lim_{x \to -\infty} f(x);$$

(b)
$$\lim_{x \to -2^{-}} f(x) = -\infty$$
, and $\lim_{x \to -2^{+}} f(x) = \infty$;

(c) $\lim_{x\to 2^-} f(x) = \infty$, and $\lim_{x\to 2^+} f(x) = -\infty$ (this follows from (b) because f(x) is an even function. Why?)

Hence the asymptotes of f are the three lines y = 0, x = -2 and x = 2. (Why?)



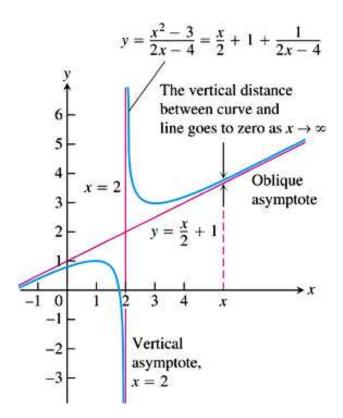
Example: Find the asymptotes of

$$f(x) = \frac{x^2 - 3}{2x - 4} \,.$$

Since the degree of the numerator is greater than the degree of the denominator, we first use polynomial division to rewrite the formula for f(x). We have

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4}$$
 for all $x \neq 2$.

Hence f has one oblique asymptote given by the line $y = \frac{x}{2} + 1$ and one vertical asymptote given by the line x = 2.



We say that the term $\frac{x}{2} + 1$ dominates f(x) when |x| is large and that the term $\frac{1}{2x-4}$ dominates f(x) when x is close to 2.

Continuity

Informally a function defined on an interval is continuous if we can sketch its graph in one continuous motion without lifting our pen from the paper. To give a more precise definition we first define what it means for a function to be continuous at a single point in its domain, and to do this we must distinguish between different kinds of points in the domain. **Definition** Let $D \subset \mathbb{R}$ and $x \in D$. Then:

- x is an *interior point* of D if we have $x \in I$ for some open interval $I = (a, b) \subseteq D$;
- x is a left end-point (respectively right end-point of D) if x is not an interior point of D and we have $x \in I$ for some half-closed interval $I = [x, b) \subseteq D$ (respectively $I = (a, x] \subseteq D$);
- x is an *isolated point* of D if x is neither an interior point nor an end-point.

Example: Let $D = [1, 2] \cup (3, 4] \cup \{5\}$. Then D has one left end-point, 1; two right endpoints 2,4; one isolated point 5; and all other points in D are interior points.

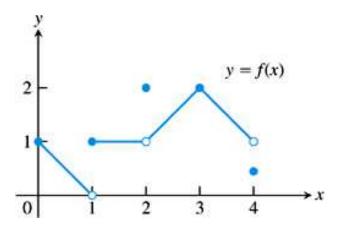
We can now define continuity at a point:

Definition Let f be a function with domain $D \subset \mathbb{R}$. Then:

- f is continuous at an interior point c of D if $\lim_{x\to c} f(x)$ exists and is equal to f(c).
- f is continuous at a left end-point a of D if $\lim_{x\to a^+} f(x)$ exists and is equal to f(a).

- f is continuous at a right end-point b of D if $\lim_{x\to b^-} f(x)$ exists and is equal to f(b).
- f is continuous at every isolated point of D.¹

Example: $f: [0,4] \to \mathbb{R}$



The function f is continuous at all points in [0, 4] except at x = 1, x = 2 and x = 4.

 $^{^1\}mathrm{In}$ this module our domains will never have isolated points so this part of the definition will never be used.