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DEFINITION Gradient Vector
The gradient vector (gradient) of f(x, y) at a point Py(xy, o) is the vector

af . 9f .

Vf=al+;}};

obtained by evaluating the partial derivatives of f at P .

The expression Vf = grad f is called “grad f”, “gradient of 7, “del f” or “nabla f”.
We can now write the directional derivative using the gradient:

Theorem: Directional Derivative
If f(x,y) is differentiable in an open region containing Py(zo, yo) then

ar\
(d—)P —(Vf)p, -,

which is the scalar product of grad f at Fy and u.

Example:
Find the derivative of f(z,y) = x eV4cos(zy) at the point (2,0) in the direction of v = 3i—4j.
The unit vector is

v v 3. 4.
U= —=——=—-i—_j.
v~ Vi 5 5
Now
f2(2,0) = (¢! —ysin(zy))| 90 = e —0=1
fy,(2,0) = (ze¥ — xsin(my))kzo) —920_-92.0=2.
Hence
Voo = J(2,0)i+ f,(2,0)j =i+ 2]
and so ; ) L
Dufligg = Vg u=({i+2j)- (Ei_5j> =5 5 b
Note that

Duyf=Vf-u=|Vf|cosh
where 6 is the angle between the vectors V f and u. This implies the following:

1. f increases most rapidly when cosf =1 (i.e. u is parallel to V f)
2. f decreases most rapidly when cos = —1 (i.e. u is in opposite direction to Vf)

3. f has zero change when cosf = 0 (i.e. u is orthogonal to V f).



Point 3 implies (why?):
At every point (2, yo) in the domain of a differentiable function f(z,y) the gradient of f
is normal to the level curve through (z¢, yo).

The level curve f(x, v} = flxy. vy)

Tangent lines to level curves are always normal to the gradient. If (z,y) is a point on the
tangent line through the point P(xg, ) then

T=(z—z0)i+(y—v)i,
is a vector parallel to it. The equation of the tangent is then

VT = fa(xo,50)(x — x0) + fy(x0, y0)(y — yo) = 0.

Tangent Planes and Differentials

DEFINITIONS Tangent Plane, Normal Line

The tangent plane at the point Py(xg, vo, Zo) on the level surface f(x, y,z) = ¢
of a differentiable function f is the plane through Py normal to Vf|p,.

The normal line of the surface at Py is the line through Py parallel to Vf|p,.

It follows! that the equation of the tangent plane is
Vg, PP = f.(Py)(x — o) + fy(Po)(y — yo) + f2(Fo)(z — 20) =0
and the equation of the normal line is
z = 1z0+ fu P)t, y=uvo+ fy(Po)t, z=2+ f.(P)t.
Example:
Find the tangent plane and normal line of the surface
f([L',y,Z) :$2+y2+2—9:0
(a circular paraboloid) at the point Py(1,2,4)

1See Section 12.5 in Thomas’ Calculus for details if you are in trouble with this.



The surface

| xP+yi+z-9=0
Pﬂ(lﬁznd")

Normal line

— iRy
= ke Tangent plane

Vilp =Qri+2yj+k) ., =2i+4j+k

where at the point Py we have f,(Fy) = 2, f,(Fo) = 4 and f.(Fy) = 1. Therefore the
equation of the tangent plane is

2@ —-1)+4(y—2)+(z—4) =0

which simplifies to
20 +4y + 2z =14.

The normal line to the surface at F is
r=1+72t, y=2+4t, z=44+1.
We remark that the gradient has the following algebraic properties:
V(kf) = kEVf for any number £

V(f+g) = Vf+£Vy
V(f-g9) = Vf-Vg
V(fg) = fVg+gVf

V(i) gi;ng
g g

(the proof is straightforward and is left as an exercise)
Before we linearise a function of two variables, recall that a function z = f(z,y) is differen-
tiable at (xo, o) if

Az = f(z,y) — f(xo,v0) = fa(o,yo) Az + f (0, y0) Ay + 1Az + €Ay

with €1, e5 — 0 (Az, Ay — 0). Solve for f(z,y) and approximate:



DEFINITIONS Linearization, Standard Linear Approximation

The linearization of a function f(x, v) at a point (xg, y¢) where f is differentiable
is the function

L(x,¥) = f(xo,y0) + fulxo, vo)x — xp) + filxo, yo)y — yo). (5)

The approximation

flx,y) = L(x,y)

is the standard linear approximation of f at (xg, vo).

Example:
Find the linearisation of

1
f(z,y) sz—wy+§y2+3

at the point (3, 2).
We first evaluate f, f, and f, at the point (zo, yo) = (3,2):

1
f3,2) = <x2—xy+—y2+3) =38
(3,2)

2
£2(3,2) 0 (x2 Ty + 1y2 + 3) (22 — ) 4
x ) - A - - = — (3’2) fng
ox 2 (3.2)
0 1
fy(3,2) = B ($2—$y+592+3) =(—r+y)s2=-1
Y (3.2)

giving

L(z,y) = f(zo,%0) + f(To,y0)(x — 20) + fy(0; %0) (¥ — vo)
= 8+@W(x-3)+(-)(y—2)=dzx—y—2.

Hence the linearisation of f at (3,2) is L(z,y) = 4o —y — 2.
Recall that for y = f(x) we have defined the differential dy = f'(x)dzx.

DEFINITION Total Differential
If we move from (xg, yo) to a point (xy + dx, yo + dv) nearby, the resulting change

df = foxo,yo) dx + fi(xo,y0) dy

in the linearization of f is called the total differential of f.

Example:
The volume V' = 7r?h of a cylinder is to be calculated from measured values of r (the
radius) and h (the height). Suppose that r is measured with an error of no more than 2%



and A with an error of no more than 0.5%. Estimate the resulting possible percentage error
in the calculation of V.
First note that

QIOO‘SQ, ’%100‘§0.5.
r h
Then
dV = V. dr + Vi, dh = 2xrhdr + 7 dh
and so
ﬂ_QWThd?“+7T7“2dh_2dT dh
Vo 7r2h or h -
Hence dV d dh d dh
r r
— | =2—4 —| < |2— —| <2(0.02 . = 0.045.
v T+h_’T+‘h‘_(OO)+OOO5 0.045

Therefore the error is no more than 4.5%.
Extreme Values and Saddle Points

When we investigated extreme values for functions of one variable we looked for points
where the graph had a horizontal tangent line. For functions of two variables we look for
points where the surface defined by z = f(z,y) has a horizontal tangent plane. This leads
to the following definition:

DEFINITIONS Local Maximum, Local Minimum

Let f(x, v) be defined on a region R containing the point (a, #). Then

1. f(a, b) is a local maximum value of f if f(a, b) = f(x, y) for all domain
points (x, v) in an open disk centered at (a, ).

2.  f(a, b) is a local minimum value of f if f(a, b) = f(x,y) for all domain
points (x, y) in an open disk centered at (a, b).

Local maxima correspond to “mountain peaks” on the surface z = f(z,y) and local minima
correspond to “valley bottoms”:

Local maxima
(no greater value of f nearby)

/ &

a2
i

s

Local minimum —*

(no smaller value
of f nearby)



Not too hard to show:

THEOREM 10—First Derivative Test for Local Extreme Values  If f(x, y) has a
local maximum or minimum value at an interior point (a, b) of its domain and if
the first partial derivatives exist there, then f.(a, b) = 0 and f,(a, b) = 0.

Define an important object:

DEFINITION Critical Point

An interior point of the domain of a function f(x, y) where both f, and f, are zero
or where one or both of f, and f, do not exist is a critical peint of f.

Therefore local maxima and minima are critical points (why?) but critical points can also
include saddle points:

DEFINITION Saddle Point

A differentiable function f(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, v) where
flx,¥) = fla, b) and domain points (x, y) where f(x, y) < f(a, b). The corre-
sponding point (a, b, f(a, b)) on the surface z = f(x, v) is called a saddle point of
the surface (Figure 14.40).

An example of a saddle point is the origin in the following surface:

Therefore, finding critical points of a function is not sufficient to identify the type of critical
point (local maximum, local minimum or saddle point). To do this we need to make use of
second partial derivatives.



THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that
f(x, v) and its first and second partial derivatives are continuous throughout a
disk centered at (@, b) and that f.(a, b) = f,(a, b) = 0.Then

i) f has alocal maximum at (a, b) if fx < Oand fu f,y — fr° > Oat(a, b).
ii) f has alocal minimum at (a, b) if f,, > Oand f.. f,, — fxy2 > 0 at (a, b).
iii) f has a saddle point at (a, b) if f.. f,, — fxy2 < 0O at(a, b).

iv) the test is inconclusive at (a, ) if f.. f), — f,cy2 = 0 at (a, b). In this case,
we must find some other way to determine the behavior of f at (a, b).

The quantity foa fy, — fy is called the discriminant or Hessian of the function f. In case
you know already what a determinant is (otherwise you will learn this soon in Geometry
1), note that

o 2 _ f:):x fxy
fa:x fyy fxy fmy fyy

Example:

Find the local extreme values of f(x,y) = 2y — 2® — y* — 22 — 2y + 4 and determine the
nature of each.

f(z,y) is defined and differentiable for all points in its domain. Hence, at extreme values
f» and f, are simultaneously zero. This gives the two equations

fo=y—20—-2=0; fy=2—-2y—2=0.

The solution of these equations is = y = —2. Hence (—2, —2) is the only point where f
may take an extreme value. Now take the second derivatives:

foo =—2<0, Jyy =2, foy=1.
At the point (-2, —2),
Jaxfyy — fx2y =(-2)(-2)-1*=3>0.

S0 fre <0 and fopfyy — :fy > (. Therefore f has a local maximum at (—2,—2). The value
of f at this point is f(—2,—2) = 8.



Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

i. boundary points of the domain of f

ii. critical points (interior points where f, = f, = 0 or points where f, or f,
fail to exist).

If the first- and second-order partial derivatives of f are continuous throughout a
disk centered at a point (a, b) and f(a, b) = f,(a, b) = 0, the nature of f(a, b)
can be tested with the Second Derivative Test:

i. fo<O0andfuf, — fy° > 0at(a,b) = local maximum

ii. foo>0andf.f, — fny > 0 at(a, b) = local minimum
M. foify — fxy2 < Oat(a,b) = saddle point

iv. fufyy — fo© = 0at(a,b) = testis inconclusive.




