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What is a function?

Definition A function f from a set D to a set Y is a rule that
assigns an element f(x) of Y to each element x of D.
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Definition A function f from a set D to a set Y is a rule that
assigns an element f(x) of Y to each element x of D.

Note that functions have a uniqueness property - there is only one
value f(x) € Y assigned to each x € D.
@ The set D of all possible input values is called the domain of
f.

@ The set Y which contains all possible output values is called
the codomain of f.

@ The set R consisting of all possible output values of f(x) as x
varies throughout D is called the range of f.
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What is a function?

Definition A function f from a set D to a set Y is a rule that
assigns an element f(x) of Y to each element x of D.

Note that functions have a uniqueness property - there is only one
value f(x) € Y assigned to each x € D.
@ The set D of all possible input values is called the domain of
f.

@ The set Y which contains all possible output values is called
the codomain of f.

@ The set R consisting of all possible output values of f(x) as x
varies throughout D is called the range of f.

@ We write f maps D to Y symbolicallyas f : D — Y.
@ We write f maps x to f(x) symbolically as f : x — f(x).
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We often think of the input and output values of a function as
variables. The function tells us how to determine the value of the
output variable y from the value of the input variable x. We write
y = f(x) and refer to x as the independent variable and y as the
dependent variable. The function f acts like a "black box" which
inputs x and outputs y = f(x).

X — I —3 f(x}
Input Output
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We often think of the input and output values of a function as
variables. The function tells us how to determine the value of the
output variable y from the value of the input variable x. We write
y = f(x) and refer to x as the independent variable and y as the
dependent variable. The function f acts like a "black box" which
inputs x and outputs y = f(x).

X — I —3 f(x}
Input Output

Examples:

y is the height of the floor of the lecture hall depending on the
distance x from the whiteboard;

y is the stock market index depending on the time x;

y is the volume of a sphere depending on its radius x.
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be
subsets of R.
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be
subsets of R.

We will often be lazy and not specify the domain and codomain of
f explicitly: in this case we will assume that the domain of f is the
the largest set of real numbers for which the definition of f makes
sense and that the codomain of f is R.
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be
subsets of R.

We will often be lazy and not specify the domain and codomain of
f explicitly: in this case we will assume that the domain of f is the
the largest set of real numbers for which the definition of f makes
sense and that the codomain of f is R.

Examples:
Function Domain Codomain Range
y =x? (—o0,00) R [0, 00)
y=1/x (—00,0)U(0,00) R (—00,0) U (0, 00)
Yy = \/)_< [Oa OO) R [0’ OO)
y=vV1-x2 [-1,1] R [0,1]
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A function is fully specified by not only giving the rule f, but also
giving its domain D, and its codomain Y. Thus

f : R — R defined by f : x — x?

and
g : [0,00) — R defined by g : x +— x?

are different functions since they have different domains.
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The graph of a function

Definition The graph of a function f : D — R is of the set of all
points (x, f(x)) in the cartesian plane whose coordinates are the
input-output pairs for f.

Example: f : R — R is defined by f(x) = x + 2.

¥

/| :
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The graph of a function

Definition The graph of a function f : D — R is of the set of all
points (x, f(x)) in the cartesian plane whose coordinates are the
input-output pairs for f.

Example: f : R — R is defined by f(x) = x + 2.

¥

/| :

=2 0

Given a function f, we can sketch its graph by plotting some of its
points (x, f(x)) in the plane and then ‘joining them up’. Calculus
will help us do this more accurately.
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Curves

Definition A curve is of the set of all points (x, y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x, y.
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Curves

Definition A curve is of the set of all points (x, y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x, y.

The graph of a function f is a special kind of curve since it is
defined by the equation y = f(x). However some curves are not
graphs of any function:

Bill Jackson Calculus |



Curves

Definition A curve is of the set of all points (x, y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x, y.

The graph of a function f is a special kind of curve since it is
defined by the equation y = f(x). However some curves are not
graphs of any function:

Recall that a function f can have only one value f(x) assigned to
each x in its domain. This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.
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J/

(@) x> +y?>=1

The curve shown in (a) is not the graph of a function since it fails
the vertical line test.
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Example continued

A

) y=V1-x2 © y=-V1-4x?

The curves in (b) and (c) are graphs of functions.
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Piecewise defined functions

Definition A piecewise defined function is a function that is
described by using different formulas on different parts of its
domain.
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Piecewise defined functions

Definition A piecewise defined function is a function that is
described by using different formulas on different parts of its
domain.

Example: The absolute value function

f(X)=|x|:{ x ifx>0

—x ifx<0
¥
y = |x|
y=-x O
v=x
2_.
I_
L [ R T
=3 =2 =1 0 | 2 3
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Another example

—x ifx<0
f(x) = x? if0<x<1
1 ifx>1
..r
2_
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The floor function

The floor function

f(x) = [x]
is defined by taking | x| to be the greatest integer which is less
than or equal to x. Thus [1.3] =1 and |-2.7] = 3.

y=x
3 b v
2F
N y=Lx)
1 | l 1 | x
-2 - 1 2 3
2
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The ceiling function

The ceiling function

f(x) = [x]
is defined by taking [x| to be the smallest integer which is greater
than or equal to x. Thus [3.5] =4 and [-1.8] = —1.

¥

3F ==
2=
y=l|x
i [%]
[ [ B "
-2 -] 1 2 3
—1+
. 2+
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Some important functions

o linear function: ‘ f(x) =mx+ b‘ for some m,b € R
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Some important functions

o linear function: ‘ f(x) =mx+ b‘ for some m,b € R

When b =0, f(x) = mx and the graph of f is a line through the
origin.

m=-3 m=2

y=-3x

m= -1
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o linear function: ‘ f(x) =mx+ b‘ for some m,b € R

When b =0, f(x) = mx and the graph of f is a line through the
origin.
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y=-3x
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Some important functions

e power function: | f(x) = x?|for a € R.
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Some important functions

e power function: | f(x) = x?|for a € R.

Graphs of f(x) = x? for a=1,2,3,4,5

LA\ y
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Some important functions

e power function: for a € R.

Graphs of f(x) = x? for a = —1, -2

Al

Domain;: x # 0
Range: y =0

Bill Jackson
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Power function

Graphs of f(x) = x? for a = %, %, %,%

Domain: 0 =x <= Domain: —% < x < =
Range: 0=y<= Range: -=<y<=

Domain: 0 =x < = Domain: —% < x < %
Range: 0=y<w= Range: O0=y<=
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Some important functions

e polynomial function: p(x) = a,x" + a,_1x" 1 + ...+ aix + ap
for n € Z with n > 0, and ag, a1, ..., an—1,an € R with a, # 0.
We say that: p(x) is a polynomial in x; ag, a1, ...,an—1,an, € R are
the coefficients of p(x); n is the degree of p(x).
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Some important functions

e polynomial function: p(x) = a,x" + a,_1x" 1 + ...+ aix + ap
for n € Z with n > 0, and ag, a1, ..., an—1,an € R with a, # 0.
We say that: p(x) is a polynomial in x; ag, a1, ...,an—1,an, € R are
the coefficients of p(x); n is the degree of p(x).

Constant functions correspond to polynomials of degree zero.
Linear functions f(x) = mx + b with m # 0 correspond to
polynomials of degree one.
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Some important functions

e polynomial function: p(x) = a,x" + a,_1x" 1 + ...+ aix + ap
for n € Z with n > 0, and ag, a1, ..., an—1,an € R with a, # 0.

We say that: p(x) is a polynomial in x; ag, a1,
the coefficients of p(x); n is the degree of p(x).

.e.,an_1,an € R are

Constant functions correspond to polynomials of degree zero.
Linear functions f(x) = mx + b with m # 0 correspond to

polynomials of degree one.

Three polynomial functions and their graphs

3 2
y=3

.
3

v

A oy=8at = 14 =9+ 1 -

(b)

N
y=-2%+ Dx-1)

S SR

x

o

W

©)
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Some important functions

(x)

e rational functions: |f(x) = PX) | where p(x) and g(x) are
q

(%)

polynomials.
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Some important functions

(x)

e rational functions: |f(x) = PX) | where p(x) and g(x) are
q

(%)

polynomials.
Note that the domain of f is {x € R : g(x) # 0} since we can
never divide by zero.
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Some important functions

e rational functions: | f(x) = ? where p(x) and g(x) are

(%)

polynomials.
Note that the domain of f is {x € R : g(x) # 0} since we can
never divide by zero.

Three rational functions and their graphs

«
T

L2

NOTTOSCALE

(a) (b) (c)
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Some important functions

We will see many other important functions throughout this

module. For example:

algebraic functions: any function constructed from polynomials
using algebraic operations (including taking roots):

v

y=x"3x - 4)

y=3w -

¥

¥

y=x(l - \'):"5

(a)

(b)

(c)
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Some important functions

We will see many other important functions throughout this

module. For example:

algebraic functions: any function constructed from polynomials
using algebraic operations (including taking roots):

v

y=x"3x - 4)

y=3w -

¥

¥

y=x(l - \'):"5

(a)

trigonometric functions

(b)

(c)
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Some important functions

We will see many other important functions throughout this

module. For example:

algebraic functions: any function constructed from polynomials

using algebraic operations (including taking roots):
y ey ¥ y =¥l — 2

y=3w -
;

(a) (b) (c)

trigonometric functions

exponential and logarithmic functions
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Special kinds of functions

Definition A function f : D — R is increasing on some interval

I CDif f(x1) < f(x2) whenever x1,x; € I and x; < x».
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along / from left to right.)
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Special kinds of functions

Definition A function f : D — R is increasing on some interval

I CDif f(x1) < f(x2) whenever x1,x; € I and x; < x».
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along / from left to right.)

Similarly f is decreasing on | if f(x1) > f(x2) whenever xq,x; € |
and x; < xp. (Informally, f is decreasing if the graph of f
“descends” or “falls” as we move along / from left to right.)
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Special kinds of functions

Definition A function f : D — R is increasing on some interval

I CDif f(x1) < f(x2) whenever x1,x; € I and x; < x».
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along / from left to right.)

Similarly f is decreasing on | if f(x1) > f(x2) whenever xq,x; € |
and x; < xp. (Informally, f is decreasing if the graph of f
“descends” or “falls” as we move along / from left to right.)

Examples:

function where increasing where decreasing

y = x? 0<x<o0 —00<x<0

y =1/x  nowhere —00 < x<0and0 < x < o0
y=1/x> —c0o<x<0 0<x<o0

y:x2/3 0<x <0 —o0<x<0
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Special kinds of functions

Definition A function f : R — R is even if f(—x) = f(x) for all
x € R. (This is the same as saying its graph is symmetric about
the y-axis.)
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Special kinds of functions

Definition A function f : R — R is even if f(—x) = f(x) for all
x € R. (This is the same as saying its graph is symmetric about
the y-axis.)

Similarly, f is odd if f(—x) = —f(x) for x € R. (This is the same
as saying its graph is symmetric about the origin.)
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Special kinds of functions

Definition A function f : R — R is even if f(—x) = f(x) for all
x € R. (This is the same as saying its graph is symmetric about
the y-axis.)

Similarly, f is odd if f(—x) = —f(x) for x € R. (This is the same
as saying its graph is symmetric about the origin.) Examples:
(a) f(x) = x?

¥

N
y=xt
(—.\‘,& (x, ¥

X

0

f(—x) = (—x)? = x? = f(x) so #'is an even function; its graph is
symmetric about the y-axis.
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Even and odd functions - examples

(b) f(x) =x°

(=x,=¥)

(b)

f(—x) = (=x)® = —x3 = —f(x): odd function; its graph is
symmetric about the origin.
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Even and odd functions - examples

(c) f(x) =xand g(x) =x+1

f(—x) = —x = —f(x) so f is an odd function

g(—x)=-—x+1#g(x) and —g(x) = —x -1 # g(—x) so g is
neither even nor odd.
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Algebraic combinations of functions

Suppose f : D — R and g : E — R are functions. Then we can
define new functions f 4+ g, f — g and fg with domain DN E as
follows:
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Algebraic combinations of functions

Suppose f : D — R and g : E — R are functions. Then we can
define new functions f 4+ g, f — g and fg with domain DN E as
follows:

We can also define the function f/g with domain
{xe DNE : g(x) # 0} by:

(f/g)(x) = f(x)/g(x)
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Algebraic combinations of functions

Suppose f : D — R and g : E — R are functions. Then we can
define new functions f 4+ g, f — g and fg with domain DN E as
follows:

We can also define the function f/g with domain
{xe DNE : g(x) # 0} by:

(f/g)(x) = f(x)/g(x)

We refer to these new functions as the sum, difference, product,
and quotient of f and g.
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Algebraic combinations of functions - examples

Examples:
f(x) = v/x domain D = [0, 00)

g(x) =v1—-x domain E = (—o0,1]
intersection of both domains:

DNE = [0,00) N (—00,1] = [0,1]
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Algebraic combinations of functions - examples

Examples:
f(x) = v/x domain D = [0, 00)

g(x) =v1—-x domain E = (—o0,1]

intersection of both domains:

DNE = [0,00) N (—00,1] = [0,1]

function formula domain

fre  (Fra)=vi+vi—x [0

f-g (f —g)(x) = vx—V1-—x [0,1]

g—f (g —)x)=vV1-—x—vx [0, 1]

fg (g)(x) = f(x)g(x) = v/x(1—=x) [0,1]

flg éf,(x) — % =,/ [0,1) (x = 1 excluded)
g/f E(x) = % = /== (0, 1] (x = 0 excluded)
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Composition of functions

Definition Suppose f : D — R and g : E — R are functions.
Then the composite function f o g is defined by

(f o g)(x) = f(g(x))-

(We read f o g as “f composed with g”. We also refer to f o g as
“the composition of f with g.")

X — £ 2(x) o — flglx))
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Composition of functions

Definition Suppose f : D — R and g : E — R are functions.
Then the composite function f o g is defined by

(f o g)(x) = f(g(x))-

(We read f o g as “f composed with g”. We also refer to f o g as
“the composition of f with g.")

X — £ 2(x) o — flglx))

The domain of f o g consists of the numbers x in the domain of g
for which g(x) lies in the domain of f, i.e.
{xeR : x € E and g(x) € D}.
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Composition of functions - example

(a) Suppose

f(x) =+ domain D = [0, 00) range R =[0,0)
g(x) =x+1 domain E=(-00,00) range S =(—00,0)

Bill Jackson Calculus |



Composition of functions - example

(a) Suppose

f(x) =+ domain D = [0, 00) range R =[0,0)
g(x) =x+1 domain E=(-00,00) range S =(—00,0)

Then
composite domain
(fog)(x) =1f(g(x)) =+glx)=vx+1 [-1,00)
(gof)(x) =g(f(x))=f(x)+1=vx+1 [0, o0)
(F o £)(x) = F(F()) = VFG) = VX =/ [0,00)
(gog)(x) =g(g(x)) =g(x) +1=x+2 (=00, 0)




Composition of functions - example

(a) Suppose

f(x) =+/x domain D =]0,00) range R =[0,00)
g(x) x?>  domain E = (—o00,00) range S =]0,00)
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Composition of functions - example

(a) Suppose

f(x) =+/x domain D =]0,00) range R =[0,00)
glx) =x*

x* domain E = (—o0,00) range S =][0,00)

Then

composite domain

(fog)(x)=Ix| (-o00,0)
(gof)(x) =x [0,00)
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Shifting the graph of a function

Suppose f is a function and ¢ € R. Let g and h be two new
functions defined by g(x) = f(x) + ¢ and h(x) = f(x + ¢). Then

@ the graph of g is equal to the graph of f shifted up by c units.

@ the graph of h is equal to the graph of f shifted to the left by
C units.
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Shifting the graph of a function

Suppose f is a function and ¢ € R. Let g and h be two new
functions defined by g(x) = f(x) + ¢ and h(x) = f(x + ¢). Then

@ the graph of g is equal to the graph of f shifted up by c units.

@ the graph of h is equal to the graph of f shifted to the left by
C units.
Note that if ¢ < 0 then a shift up by ¢ units is actually a shift
down, and a shift to the left by ¢ units is actually a shift to the
right.
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Shifting the graph of a function

Suppose f is a function and ¢ € R. Let g and h be two new
functions defined by g(x) = f(x) + ¢ and h(x) = f(x + ¢). Then

@ the graph of g is equal to the graph of f shifted up by c units.

@ the graph of h is equal to the graph of f shifted to the left by
C units.

Note that if ¢ < 0 then a shift up by ¢ units is actually a shift
down, and a shift to the left by ¢ units is actually a shift to the
right.

Note also that g and h can both be obtained from f by taking a
composition with a linear function: if k(x) = x + ¢ for all x € R
then g =kof and h=fok.
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Shifting the graph of a function - Example

y=x*+2
y=x2+1
2
y=x*
y=x-2
+—L x
=200 2
-1 1 2 units
2k
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Shifting the graph of a function - Example

y=x*+2
y=x2+1
2
y=ux*
y=x-2
1
t X
N2
- 1/ 2 units
2L
Add a positive Add a negative
constant to x. y constant to x.

y=(x+3)?
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Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf(x) and h(x) = f(cx). If ¢ > 0 then

@ the graph of g is equal to the graph of f scaled by a factor of
¢ along the y-axis.

@ the graph of his equal to the graph of f scaled by a factor of
¢ along the x-axis.
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Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf(x) and h(x) = f(cx). If ¢ > 0 then

@ the graph of g is equal to the graph of f scaled by a factor of
¢ along the y-axis.

@ the graph of his equal to the graph of f scaled by a factor of
¢ along the x-axis.

Example y = /x
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Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf(x) and h(x) = f(cx). If ¢ > 0 then

@ the graph of g is equal to the graph of f scaled by a factor of
¢ along the y-axis.

@ the graph of his equal to the graph of f scaled by a factor of
¢ along the x-axis.

Example y = /x

4 =
y= V3x
3 =
compress
2F y=Vx
. stretch
1 y=Va/3
1 1 L 1 1 "
= o 1 2 3 4 "
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Reflecting the graph of a function

If c=—1ie g(x)=—f(x)and h(x) = f(—x), then
@ the graph of g is equal to the graph of f reflected across the
X-axis.
@ the graph of his equal to the graph of f reflected across the
y-axis.
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Reflecting the graph of a function

If c=—1ie g(x)=—f(x)and h(x) = f(—x), then
@ the graph of g is equal to the graph of f reflected across the

X-axis.

@ the graph of his equal to the graph of f reflected across the

y-axis.
Example y = /x

—
y=V-x
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Reflecting the graph of a function

If c=—1ie g(x)=—f(x)and h(x) = f(—x), then
@ the graph of g is equal to the graph of f reflected across the
X-axis.
@ the graph of his equal to the graph of f reflected across the
y-axis.
Example y = /x

—
y=V-x

If ¢ < 0 is an arbitrary negative real number then we obtain a
combination of a scaling and a reflection: see Exercise Sheet 2 for
examples
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