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What is a function?

Definition A function f from a set D to a set Y is a rule that
assigns an element f (x) of Y to each element x of D.
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What is a function?

Definition A function f from a set D to a set Y is a rule that
assigns an element f (x) of Y to each element x of D.

Note that functions have a uniqueness property - there is only one
value f (x) ∈ Y assigned to each x ∈ D.

The set D of all possible input values is called the domain of
f .

The set Y which contains all possible output values is called
the codomain of f .

The set R consisting of all possible output values of f (x) as x
varies throughout D is called the range of f .

We write f maps D to Y symbolically as f : D → Y .

We write f maps x to f (x) symbolically as f : x 7→ f (x).
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Variables

We often think of the input and output values of a function as
variables. The function tells us how to determine the value of the
output variable y from the value of the input variable x . We write
y = f (x) and refer to x as the independent variable and y as the
dependent variable. The function f acts like a ”black box” which
inputs x and outputs y = f (x).
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Variables

We often think of the input and output values of a function as
variables. The function tells us how to determine the value of the
output variable y from the value of the input variable x . We write
y = f (x) and refer to x as the independent variable and y as the
dependent variable. The function f acts like a ”black box” which
inputs x and outputs y = f (x).

Examples:

y is the height of the floor of the lecture hall depending on the
distance x from the whiteboard;
y is the stock market index depending on the time x ;
y is the volume of a sphere depending on its radius x .
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be

subsets of R.
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be

subsets of R.
We will often be lazy and not specify the domain and codomain of
f explicitly: in this case we will assume that the domain of f is the

the largest set of real numbers for which the definition of f makes

sense and that the codomain of f is R.
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Real functions

The domain D and the codomain Y of a function f can be any
sets. In this module, however, we will always take D and Y to be

subsets of R.
We will often be lazy and not specify the domain and codomain of
f explicitly: in this case we will assume that the domain of f is the

the largest set of real numbers for which the definition of f makes

sense and that the codomain of f is R.

Examples:

Function Domain Codomain Range

y = x2 (−∞,∞) R [0,∞)
y = 1/x (−∞, 0) ∪ (0,∞) R (−∞, 0) ∪ (0,∞)
y =

√
x [0,∞) R [0,∞)

y =
√
1− x2 [−1, 1] R [0, 1]
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Remark

A function is fully specified by not only giving the rule f , but also
giving its domain D, and its codomain Y . Thus

f : R → R defined by f : x 7→ x2

and
g : [0,∞) → R defined by g : x 7→ x2

are different functions since they have different domains.
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The graph of a function

Definition The graph of a function f : D → R is of the set of all
points (x , f (x)) in the cartesian plane whose coordinates are the
input-output pairs for f .
Example: f : R → R is defined by f (x) = x + 2.
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The graph of a function

Definition The graph of a function f : D → R is of the set of all
points (x , f (x)) in the cartesian plane whose coordinates are the
input-output pairs for f .
Example: f : R → R is defined by f (x) = x + 2.

Given a function f , we can sketch its graph by plotting some of its
points (x , f (x)) in the plane and then ‘joining them up’. Calculus
will help us do this more accurately.
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Curves

Definition A curve is of the set of all points (x , y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x , y .
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Curves

Definition A curve is of the set of all points (x , y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x , y .

The graph of a function f is a special kind of curve since it is
defined by the equation y = f (x). However some curves are not
graphs of any function:
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Curves

Definition A curve is of the set of all points (x , y) in the cartesian
plane whose coordinates satisfy some equation involving the
variables x , y .

The graph of a function f is a special kind of curve since it is
defined by the equation y = f (x). However some curves are not
graphs of any function:

Recall that a function f can have only one value f (x) assigned to

each x in its domain. This leads to the vertical line test:

No vertical line can intersect the graph of a function more than once.
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Example

(a) x2 + y2 = 1

The curve shown in (a) is not the graph of a function since it fails
the vertical line test.
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Example continued

The curves in (b) and (c) are graphs of functions.
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Piecewise defined functions

Definition A piecewise defined function is a function that is
described by using different formulas on different parts of its
domain.
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Piecewise defined functions

Definition A piecewise defined function is a function that is
described by using different formulas on different parts of its
domain.

Example: The absolute value function

f (x) = |x | =
{

x if x ≥ 0
−x if x < 0
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Another example

f (x) =







−x if x < 0
x2 if 0 ≤ x ≤ 1
1 if x > 1
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The floor function

The floor function

f (x) = ⌊x⌋
is defined by taking ⌊x⌋ to be the greatest integer which is less
than or equal to x . Thus ⌊1.3⌋ = 1 and ⌊−2.7⌋ = −3.
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The ceiling function

The ceiling function

f (x) = ⌈x⌉
is defined by taking ⌈x⌉ to be the smallest integer which is greater
than or equal to x . Thus ⌈3.5⌉ = 4 and ⌈−1.8⌉ = −1.
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Some important functions

• linear function: f (x) = mx + b for some m, b ∈ R
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Some important functions

• linear function: f (x) = mx + b for some m, b ∈ R

When b = 0, f (x) = mx and the graph of f is a line through the
origin.
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Some important functions

• linear function: f (x) = mx + b for some m, b ∈ R

When b = 0, f (x) = mx and the graph of f is a line through the
origin.

When m = 0, f (x) = b and f is a constant function.
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Some important functions

• power function: f (x) = xa for a ∈ R.
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Some important functions

• power function: f (x) = xa for a ∈ R.

Graphs of f (x) = xa for a = 1, 2, 3, 4, 5
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Some important functions

• power function: f (x) = xa for a ∈ R.

Graphs of f (x) = xa for a = −1,−2
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Power function

Graphs of f (x) = xa for a = 1
2 ,

1
3 ,

3
2 ,

2
3
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Some important functions

• polynomial function: p(x) = anx
n + an−1x

n−1 + . . .+ a1x + a0
for n ∈ Z with n ≥ 0, and a0, a1, . . . , an−1, an ∈ R with an 6= 0.
We say that: p(x) is a polynomial in x ; a0, a1, . . . , an−1, an ∈ R are
the coefficients of p(x); n is the degree of p(x).
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n−1 + . . .+ a1x + a0
for n ∈ Z with n ≥ 0, and a0, a1, . . . , an−1, an ∈ R with an 6= 0.
We say that: p(x) is a polynomial in x ; a0, a1, . . . , an−1, an ∈ R are
the coefficients of p(x); n is the degree of p(x).
Constant functions correspond to polynomials of degree zero.
Linear functions f (x) = mx + b with m 6= 0 correspond to
polynomials of degree one.
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Some important functions

• polynomial function: p(x) = anx
n + an−1x

n−1 + . . .+ a1x + a0
for n ∈ Z with n ≥ 0, and a0, a1, . . . , an−1, an ∈ R with an 6= 0.
We say that: p(x) is a polynomial in x ; a0, a1, . . . , an−1, an ∈ R are
the coefficients of p(x); n is the degree of p(x).
Constant functions correspond to polynomials of degree zero.
Linear functions f (x) = mx + b with m 6= 0 correspond to
polynomials of degree one.

Three polynomial functions and their graphs
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Some important functions

• rational functions: f (x) =
p(x)

q(x)
where p(x) and q(x) are

polynomials.
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Some important functions

• rational functions: f (x) =
p(x)

q(x)
where p(x) and q(x) are

polynomials.
Note that the domain of f is {x ∈ R : q(x) 6= 0} since we can
never divide by zero.
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Some important functions

• rational functions: f (x) =
p(x)

q(x)
where p(x) and q(x) are

polynomials.
Note that the domain of f is {x ∈ R : q(x) 6= 0} since we can
never divide by zero.

Three rational functions and their graphs
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Some important functions

We will see many other important functions throughout this
module. For example:
algebraic functions: any function constructed from polynomials
using algebraic operations (including taking roots):
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Some important functions

We will see many other important functions throughout this
module. For example:
algebraic functions: any function constructed from polynomials
using algebraic operations (including taking roots):

trigonometric functions
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Some important functions

We will see many other important functions throughout this
module. For example:
algebraic functions: any function constructed from polynomials
using algebraic operations (including taking roots):

trigonometric functions

exponential and logarithmic functions
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Special kinds of functions

Definition A function f : D → R is increasing on some interval
I ⊆ D if f (x1) ≤ f (x2) whenever x1, x2 ∈ I and x1 ≤ x2.
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along I from left to right.)
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Special kinds of functions

Definition A function f : D → R is increasing on some interval
I ⊆ D if f (x1) ≤ f (x2) whenever x1, x2 ∈ I and x1 ≤ x2.
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along I from left to right.)
Similarly f is decreasing on I if f (x1) ≥ f (x2) whenever x1, x2 ∈ I

and x1 ≤ x2. (Informally, f is decreasing if the graph of f
“descends” or “falls” as we move along I from left to right.)
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Special kinds of functions

Definition A function f : D → R is increasing on some interval
I ⊆ D if f (x1) ≤ f (x2) whenever x1, x2 ∈ I and x1 ≤ x2.
(Informally, f is increasing if the graph of f “climbs” or “rises” as
we move along I from left to right.)
Similarly f is decreasing on I if f (x1) ≥ f (x2) whenever x1, x2 ∈ I

and x1 ≤ x2. (Informally, f is decreasing if the graph of f
“descends” or “falls” as we move along I from left to right.)
Examples:

function where increasing where decreasing

y = x2 0 ≤ x < ∞ −∞ < x ≤ 0
y = 1/x nowhere −∞ < x < 0 and 0 < x < ∞
y = 1/x2 −∞ < x < 0 0 < x < ∞
y = x2/3 0 ≤ x < ∞ −∞ < x ≤ 0

Bill Jackson Calculus I



Special kinds of functions

Definition A function f : R → R is even if f (−x) = f (x) for all
x ∈ R. (This is the same as saying its graph is symmetric about
the y -axis.)
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Special kinds of functions

Definition A function f : R → R is even if f (−x) = f (x) for all
x ∈ R. (This is the same as saying its graph is symmetric about
the y -axis.)
Similarly, f is odd if f (−x) = −f (x) for x ∈ R. (This is the same
as saying its graph is symmetric about the origin.)
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Special kinds of functions

Definition A function f : R → R is even if f (−x) = f (x) for all
x ∈ R. (This is the same as saying its graph is symmetric about
the y -axis.)
Similarly, f is odd if f (−x) = −f (x) for x ∈ R. (This is the same
as saying its graph is symmetric about the origin.) Examples:

(a) f (x) = x2

f (−x) = (−x)2 = x2 = f (x) so f is an even function; its graph is
symmetric about the y-axis.
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Even and odd functions - examples

(b) f (x) = x3

f (−x) = (−x)3 = −x3 = −f (x): odd function; its graph is
symmetric about the origin.
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Even and odd functions - examples

(c) f (x) = x and g(x) = x + 1

f (−x) = −x = −f (x) so f is an odd function

g(−x) = −x + 1 6= g(x) and −g(x) = −x − 1 6= g(−x) so g is
neither even nor odd.
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Algebraic combinations of functions

Suppose f : D → R and g : E → R are functions. Then we can
define new functions f + g , f − g and fg with domain D ∩ E as
follows:

(f + g)(x) = f (x) + g(x)

(f − g)(x) = f (x)− g(x)

(fg)(x) = f (x)g(x)
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Algebraic combinations of functions

Suppose f : D → R and g : E → R are functions. Then we can
define new functions f + g , f − g and fg with domain D ∩ E as
follows:

(f + g)(x) = f (x) + g(x)

(f − g)(x) = f (x)− g(x)

(fg)(x) = f (x)g(x)

We can also define the function f /g with domain
{x ∈ D ∩ E : g(x) 6= 0} by:

(f /g)(x) = f (x)/g(x)
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Algebraic combinations of functions

Suppose f : D → R and g : E → R are functions. Then we can
define new functions f + g , f − g and fg with domain D ∩ E as
follows:

(f + g)(x) = f (x) + g(x)

(f − g)(x) = f (x)− g(x)

(fg)(x) = f (x)g(x)

We can also define the function f /g with domain
{x ∈ D ∩ E : g(x) 6= 0} by:

(f /g)(x) = f (x)/g(x)

We refer to these new functions as the sum, difference, product,

and quotient of f and g .
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Algebraic combinations of functions - examples

Examples:

f (x) =
√
x domain D = [0,∞)

g(x) =
√
1− x domain E = (−∞, 1]

intersection of both domains:

D ∩ E = [0,∞) ∩ (−∞, 1] = [0, 1]
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Algebraic combinations of functions - examples

Examples:

f (x) =
√
x domain D = [0,∞)

g(x) =
√
1− x domain E = (−∞, 1]

intersection of both domains:

D ∩ E = [0,∞) ∩ (−∞, 1] = [0, 1]

function formula domain

f + g (f + g)(x) =
√
x +

√
1− x [0, 1]

f − g (f − g)(x) =
√
x −

√
1− x [0, 1]

g − f (g − f )(x) =
√
1− x −√

x [0, 1]

fg (fg)(x) = f (x)g(x) =
√

x(1 − x) [0, 1]

f /g f
g
(x) = f (x)

g(x) =
√

x
1−x

[0, 1) (x = 1 excluded)

g/f g
f
(x) = g(x)

f (x) =
√

1−x
x

(0, 1] (x = 0 excluded)
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Composition of functions

Definition Suppose f : D → R and g : E → R are functions.
Then the composite function f ◦ g is defined by

(f ◦ g)(x) = f (g(x)).

(We read f ◦ g as “f composed with g”. We also refer to f ◦ g as
“the composition of f with g .”)
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Composition of functions

Definition Suppose f : D → R and g : E → R are functions.
Then the composite function f ◦ g is defined by

(f ◦ g)(x) = f (g(x)).

(We read f ◦ g as “f composed with g”. We also refer to f ◦ g as
“the composition of f with g .”)

The domain of f ◦ g consists of the numbers x in the domain of g
for which g(x) lies in the domain of f , i.e.
{x ∈ R : x ∈ E and g(x) ∈ D}.
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Composition of functions - example

(a) Suppose

f (x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x + 1 domain E = (−∞,∞) range S = (−∞,∞)
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Composition of functions - example

(a) Suppose

f (x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x + 1 domain E = (−∞,∞) range S = (−∞,∞)

Then

composite domain

(f ◦ g)(x) = f (g(x)) =
√

g(x) =
√
x + 1 [−1,∞)

(g ◦ f )(x) = g(f (x)) = f (x) + 1 =
√
x + 1 [0,∞)

(f ◦ f )(x) = f (f (x)) =
√

f (x) =
√√

x = x1/4 [0,∞)
(g ◦ g)(x) = g(g(x)) = g(x) + 1 = x + 2 (−∞,∞)
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Composition of functions - example

(a) Suppose

f (x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x2 domain E = (−∞,∞) range S = [0,∞)
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Composition of functions - example

(a) Suppose

f (x) =
√
x domain D = [0,∞) range R = [0,∞)

g(x) = x2 domain E = (−∞,∞) range S = [0,∞)

Then

composite domain

(f ◦ g)(x) = |x | (−∞,∞)
(g ◦ f )(x) = x [0,∞)
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Shifting the graph of a function

Suppose f is a function and c ∈ R. Let g and h be two new
functions defined by g(x) = f (x) + c and h(x) = f (x + c). Then

the graph of g is equal to the graph of f shifted up by c units.

the graph of h is equal to the graph of f shifted to the left by
c units.
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Shifting the graph of a function

Suppose f is a function and c ∈ R. Let g and h be two new
functions defined by g(x) = f (x) + c and h(x) = f (x + c). Then

the graph of g is equal to the graph of f shifted up by c units.

the graph of h is equal to the graph of f shifted to the left by
c units.

Note that if c < 0 then a shift up by c units is actually a shift
down, and a shift to the left by c units is actually a shift to the
right.
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Shifting the graph of a function

Suppose f is a function and c ∈ R. Let g and h be two new
functions defined by g(x) = f (x) + c and h(x) = f (x + c). Then

the graph of g is equal to the graph of f shifted up by c units.

the graph of h is equal to the graph of f shifted to the left by
c units.

Note that if c < 0 then a shift up by c units is actually a shift
down, and a shift to the left by c units is actually a shift to the
right.
Note also that g and h can both be obtained from f by taking a
composition with a linear function: if k(x) = x + c for all x ∈ R

then g = k ◦ f and h = f ◦ k .
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Shifting the graph of a function - Example
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Shifting the graph of a function - Example
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Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf (x) and h(x) = f (cx). If c > 0 then

the graph of g is equal to the graph of f scaled by a factor of
c along the y -axis.

the graph of h is equal to the graph of f scaled by a factor of
c along the x-axis.
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Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf (x) and h(x) = f (cx). If c > 0 then

the graph of g is equal to the graph of f scaled by a factor of
c along the y -axis.

the graph of h is equal to the graph of f scaled by a factor of
c along the x-axis.

Example y =
√
x

Bill Jackson Calculus I



Scaling the graph of a function

Suppose f is a function and cR. Let g and h be two new functions
defined by g(x) = cf (x) and h(x) = f (cx). If c > 0 then

the graph of g is equal to the graph of f scaled by a factor of
c along the y -axis.

the graph of h is equal to the graph of f scaled by a factor of
c along the x-axis.

Example y =
√
x
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Reflecting the graph of a function

If c = −1 i.e. g(x) = −f (x) and h(x) = f (−x), then

the graph of g is equal to the graph of f reflected across the
x-axis.

the graph of h is equal to the graph of f reflected across the
y -axis.
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Reflecting the graph of a function

If c = −1 i.e. g(x) = −f (x) and h(x) = f (−x), then

the graph of g is equal to the graph of f reflected across the
x-axis.

the graph of h is equal to the graph of f reflected across the
y -axis.

Example y =
√
x
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Reflecting the graph of a function

If c = −1 i.e. g(x) = −f (x) and h(x) = f (−x), then

the graph of g is equal to the graph of f reflected across the
x-axis.

the graph of h is equal to the graph of f reflected across the
y -axis.

Example y =
√
x

If c < 0 is an arbitrary negative real number then we obtain a
combination of a scaling and a reflection: see Exercise Sheet 2 for
examples
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