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Sometimes it is useful to use polar coordinates.

Reminder (or perhaps not?): Polar coordinates
As an alternative to Cartesian coordinates (x, y), we can describe a point P in the plane
by using polar coordinates:

These coordinates are particularly useful if a function, or a problem, has some circular
symmetry. Typically, we restrict ourselves to 0 ≤ r and 0 ≤ θ < 2π (why?). Polar and
Cartesian coordinates can be converted into each other:

For the direction polar to Cartesian coordinates we easily derive

x = r cos θ , y = r sin θ

That is, given (r, θ), we can compute (x, y). The direction Cartesian to polar coordinates is
left to you as an exercise.1

1If you have not encountered polar coordinates before in sufficient detail, I highly recommend that you

familiarize yourself with Thomas’ Calculus, Section 11.3.
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Example:

Determine the continuity of the function defined by

f(x, y) =

{ 2xy

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

In polar coordinates, i.e., by using x = r cos θ, y = r sin θ, the function can be written as

f(r, θ) =
2r2 cos θ sin θ

r2(cos2 θ + sin2 θ)
= sin 2θ

provided we are not at the origin (i.e. provided r 6= 0). Therefore, as r → 0, the outcome
depends on the angle θ. For example, along θ = π/4, f = sin 2θ = sin π/2 = 1 everywhere
along the line. Therefore the function is not continuous.

Partial Derivatives

Reminder: Derivative
For functions of one variable, y = f(x), the derivative at a point is the gradient of the
tangent to the curve at that point.

But for functions of two variables, z = f(x, y), an infinite number of tangents exist at a
point. However, if we fix y = y0 in f(x, y) and let x vary, then f(x, y0) depends only on x:

That is, we can reduce the problem of the many-variable derivative effectively to the one-
variable case by holding all but one of the independent variables constant.
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Definition:

The partial derivative of f(x, y) with respect to x at the point (x0, y0) is

∂f

∂x

∣

∣

∣

∣

(x0,y0)

= lim
h→0

f(x0 + h, y0) − f(x0, y0)

h
= fx(x0, y0) =

∂f

∂x
(x0, y0)

provided the limit exists.

In complete analogy, the partial derivative of f(x, y) with respect to y at the point (x0, y0)
is

∂f

∂y

∣

∣

∣

∣

(x0,y0)

= lim
h→0

f(x0, y0 + h) − f(x0, y0)

h
= fy(x0, y0) =

∂f

∂y
(x0, y0)

provided the limit exists.

For example, if f(x, y) = x2 + y2 then fx = 2x, fy = 2y.

Note how we treat the other variables as constants when we do partial differentiation!

We can extend this to three (or more) dimensions. For example, if f(x, y, z) = xy2z3 then
fx = y2z3, fy = 2xyz3, fz = 3xy2z2.

Example:

Find ∂f/∂x and ∂f/∂y at the point (4,−5) for the function f(x, y) = x2 + 3xy + y − 1.

∂f

∂x
=

∂

∂x
(x2 + 3xy + y − 1) = 2x + 3y

∂f

∂y
=

∂

∂y
(x2 + 3xy + y − 1) = 3x + 1 .

At the point (4,−5) we have

∂f

∂x

∣

∣

∣

∣

(4,−5)

= −7 ,
∂f

∂y

∣

∣

∣

∣

(4,−5)

= 13 .

Example:

Find ∂z/∂x if the equation yz − ln z = x + y (implicitly) defines z = z(x, y).

∂

∂x
(yz − ln z) =

∂

∂x
(x + y) .

Hence

y
∂z

∂x
−

1

z

∂z

∂x
= 1 + 0 .

This gives
(

y −
1

z

)

∂z

∂x
= 1 ; ⇒

∂z

∂x
=

z

yz − 1
.

We can also obtain higher order derivatives.
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Example:

If f(x, y) = x cos y + y ex, find

fxx =
∂2f

∂x2
, fyx =

∂2f

∂x∂y
, fyy =

∂2f

∂y2
and fxy =

∂2f

∂y∂x
.

The first step is to find the first partial derivatives:

∂f

∂x
= cos y + y ex

∂f

∂y
= −x sin y + ex .

Now we take the partial derivatives of the first partial derivatives. This gives:

∂2f

∂x2
= y ex

∂2f

∂y∂x
= − sin y + ex

∂2f

∂x∂y
= − sin y + ex

∂2f

∂y2
= −x cos y .

This illustrates the following Theorem:

Theorem: Mixed Derivative Theorem

If f(x, y) and its partial derivatives fx, fy, fxy and fyx are defined throughout an open region
containing a point (a, b) and are all continuous at (a, b) then

fxy(a, b) = fyx(a, b) .

(An example where fxy(a, b) 6= fyx(a, b) is provided by the function discussed on p.9/10 of
the lecture notes in week 1.)

The theorem can be extended to higher orders, provided the derivatives are continuous.

Example:

Find fyxyz if f(x, y, z) = 1 − 2xy2z + x2y.

fy = −4xyz + x2 , fyx = −4yz + 2x , fyxy = −4z , fyxyz = −4 .

Reminder:

For functions of a single variable it holds that if y = f(x) is differentiable at x = x0, then
the change in the value of f that results from changing x from x0 to x0 + ∆x is given by
the differential approximation

∆y = f ′(x0)∆x + ǫ∆x

in which ǫ → 0 as ∆x → 0 (see Thomas’ Calculus Section 3.9). For functions of two
variables, the analogous property yields the definition of differentiability:
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Note in particular that for z = f(x, y), differentiability is more than the existence of the

partial derivatives, as becomes also clear from the following statement:

If fx and fy are continuous throughout an open region R, then f is differentiable at every
point of R.

It also holds, in analogy to functions of a single variable:

If a function f(x, y) is differentiable at a point (x0, y0) then f is continuous at (x0, y0).

If you are interested in the details underlying the above statements, like the Increment

Theorem, please check out Thomas’ Calculus p.771/772.

The Chain Rule

Reminder: Chain Rule for Function of One Variable

If w = f(x) is a differentiable function of x and x = g(t) is a differentiable function of t,
then

dw

dt
=

dw

dx

dx

dt
.

Similarly:

Theorem: Chain Rule for Functions of Two Variables

If w = f(x, y) is differentiable and if x = x(t), y = y(t) are differentiable functions of t, then
w = f(x(t), y(t)) is a differentiable function of t and

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
.

This straightforwardly follows from the above definition of differentiability.

We can easily extend this theorem to functions w = f(x, y, z) of three variables:

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt
.

We can use tree diagrams to illustrate the application of the Chain Rule:
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(a) (b)

(a) To find dw/dt, start at w and read down each route to t, multiplying derivatives along
the way; then add the products. (b) For functions of three variables there are three routes
from w to t instead of two, but finding dw/dt is still the same: read down each route,
multiplying derivatives along the way; then add.

Example:

Use the Chain Rule to find the derivative of w = xy with respect to t along the path
x = cos t, y = sin t.

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
= y(− sin t) + x(cos t) = − sin2 t + cos2 t = cos 2t .

Note that we could have done this more directly by noting that

w = xy = cos t sin t =
1

2
sin 2t ;

dw

dt
=

1

2
· 2 cos 2t = cos 2t .

If w = f(x, y) where x = g(r, s) and y = h(r, s) then

∂w

∂r
=

∂w

∂x

∂x

∂r
+

∂w

∂y

∂y

∂r
and

∂w

∂s
=

∂w

∂x

∂x

∂s
+

∂w

∂y

∂y

∂s

and in analogy for functions w = f(x, y, z). Also, if w = f(x) and x = g(r, s) then

∂w

∂r
=

dw

dx

∂x

∂r
and

∂w

∂s
=

dw

dx

∂x

∂s
.

Example:

For u = w(x, y, z), express ∂w/∂r and ∂w/∂s in terms of r and s if

w = x + 2y + z2 , x =
r

s
, y = r2 + ln s , z = 2r .
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We have

∂w

∂r
=

∂w

∂x

∂x

∂r
+

∂w

∂y

∂y

∂r
+

∂w

∂z

∂z

∂r

= (1)

(

1

s

)

+ (2)(2r) + (2z)(2) =
1

s
+ 12r

and

∂w

∂s
=

∂w

∂x

∂x

∂s
+

∂w

∂y

∂y

∂s
+

∂w

∂z

∂z

∂s

= (1)

(

−r

s2

)

+ (2)

(

1

s

)

+ (2z)(0) =
2

s
−

r

s2
.

Suppose that w = F (x, y) is differentiable and that F (x, y) = 0 defines y (implicitly) as a
differentiable function of x. Then

0 =
dw

dx
= Fx

dx

dx
+ Fy

dy

dx
= Fx + Fy

dy

dx
.

Hence, at any point where Fy 6= 0,
dy

dx
= −

Fx

Fy

.

This is the Formula for Implicit Differentiation.

Example:

Find dy/dx if y2 − x2 − sin xy = 0.

F (x, y) = y2 − x2 − sin xy

dy

dx
= −

Fx

Fy

= −
(−2x − y cos xy)

(2y − x cos xy)
=

2x + y cos xy

2y − x cos xy
.

You may wish to compare this method with the one that you have learned in Calculus 1,
i.e., differentiating the whole equation with respect to x and then solving for dy/dx.

Directional Derivatives and Gradient Vectors

We now investigate the derivative of a function f(x, y) at a point in a particular direction:
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It is also denoted by (Duf)P0
as the derivative of f at the point P0 in the direction of the

unit vector u. The meaning is illustrated in the following figure:

We can develop a more efficient formula for the directional derivative by considering the line

x = x0 + su1 , y = y0 + su2

through the point P0(x0, y0), parametrised with the arc length parameter s increasing in the
direction of the unit vector u = u1i + u2j. Then

(

df

ds

)

u,P0

=

(

∂f

∂x

)

P0

dx

ds
+

(

∂f

∂y

)

P0

dy

ds
(via the Chain Rule)

=

(

∂f

∂x

)

P0

u1 +

(

∂f

∂y

)

P0

u2

=

[

(

∂f

∂x

)

P0

i +

(

∂f

∂y

)

P0

j

]

· [u1i + u2j]


