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Sometimes it is useful to use polar coordinates.

Reminder (or perhaps not?): Polar coordinates
As an alternative to Cartesian coordinates (z,y), we can describe a point P in the plane
by using polar coordinates:
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r
Origin (pole)
f
0 — > X
[nitial ray
Polar Coordinates
P(r,0)
Directed distance Directed angle from
from O to P initial ray to OP

These coordinates are particularly useful if a function, or a problem, has some circular
symmetry. Typically, we restrict ourselves to 0 < r and 0 < 6 < 27 (why?). Polar and
Cartesian coordinates can be converted into each other:
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For the direction polar to Cartesian coordinates we easily derive
r=rcosf, y=rsinb

That is, given (r,#), we can compute (z,y). The direction Cartesian to polar coordinates is
left to you as an exercise.!

'Tf you have not encountered polar coordinates before in sufficient detail, I highly recommend that you
familiarize yourself with Thomas’ Calculus, Section 11.3.



Example:
Determine the continuity of the function defined by

[ A i () # (0,0)
f(x,y)—{ 0+ if (z,y) = (0,0)

In polar coordinates, i.e., by using x = rcosf, y = rsin 6, the function can be written as

272 cos 0sin 0
0) = = sin 20
f(r.9) 72(cos? § + sin? ) o

provided we are not at the origin (i.e. provided r # 0). Therefore, as r — 0, the outcome
depends on the angle 6. For example, along 6 = w/4, f = sin20 = sinw/2 = 1 everywhere
along the line. Therefore the function is not continuous.

Partial Derivatives

Reminder: Derivative
For functions of one variable, y = f(x), the derivative at a point is the gradient of the
tangent to the curve at that point.

But for functions of two variables, z = f(x,y), an infinite number of tangents exist at a
point. However, if we fix y = yo in f(x,y) and let x vary, then f(z,yo) depends only on z:

Z
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P(xq, y0, f (X0, ¥0))

z=fxy)
The curve z = f(x, yg)

in the plane y = y,

Tangent line

Yo

(xg + A, yo)
Horizontal axis in the plane y = y;

That is, we can reduce the problem of the many-variable derivative effectively to the one-
variable case by holding all but one of the independent variables constant.



Definition:

The partial derivative of f(x,y) with respect to x at the point (xg,yo) is
of . fl@o+ hyyo) = f(mo,v0) _of
o o) = hli% A = fo(w0,%0) = o (70, Yo0)

provided the limit exists.

In complete analogy, the partial derivative of f(x,y) with respect to y at the point (zo, yo)

1S
h) — 0
_ ,ILE% f(xo;yo + ,1 f(l'07y0) _ fy(xo,yo) = 8_£<I0’y0>

dy

(3307110)

provided the limit exists.
For example, if f(z,y) = 2? 4+ y* then f, = 2z, f, = 2y.
Note how we treat the other variables as constants when we do partial differentiation!

We can extend this to three (or more) dimensions. For example, if f(z,y,2) = zy?z® then
fx = y2237 fy - 22L‘y23, fz = 3l‘y22’2.

Example:
Find df/0x and df /0y at the point (4, —5) for the function f(z,y) = 2* + 3xy +y — 1.

0 0
8—£ = %(x2+3xy+y—1):2x+3y
0 0

At the point (4, —5) we have

A
0|y _s) Y |(4,5)

Example:
Find 0z/0z if the equation yz — In 2z = = + y (implicitly) defines z = z(z,y).

%(yz—lnz):%(xjty).
Hence P L8
z z
Yor zoe 'Y
This gives
()2 0: -
Y735 ) bx ’ or yz—1"

We can also obtain higher order derivatives.



Example:
If f(x,y) =xcosy+ ye®, find
_of

o2

>
0xdy’

0*f
fyy = a_yQ and fxy =

02 f

Jfao By0z

fy:c -

The first step is to find the first partial derivatives:
of

8_$ = cosy+tye
of _ -
— = —xsiny-+e .
dy

Now we take the partial derivatives of the first partial derivatives. This gives:

0 f -
e

2

828]; = —siny +¢€°
2

(‘fxgy = —siny+e¢e”*
0 f

a_yQ = —XCcosy.

This illustrates the following Theorem:

Theorem:  Mixed Derivative Theorem
If f(z,y) and its partial derivatives f,, f,, fu, and f,, are defined throughout an open region
containing a point (a,b) and are all continuous at (a,b) then

foy(a,b0) = fya(a;b).

(An example where f,,(a,b) # fyz(a,b) is provided by the function discussed on p.9/10 of
the lecture notes in week 1.)
The theorem can be extended to higher orders, provided the derivatives are continuous.

Example:
Find fyup. if f(z,y,2) =1 = 2292 + 2%y.

fy:—4:cyz+x2, fyz:_4yz+2xa fyxy:_4za fy:pyz:_4-

Reminder:
For functions of a single variable it holds that if y = f(z) is differentiable at = = xg, then
the change in the value of f that results from changing = from zq to x¢ + Az is given by
the differential approximation

Ay = f'(xo)Az + eAx

in which ¢ — 0 as Az — 0 (see Thomas’ Calculus Section 3.9). For functions of two
variables, the analogous property yields the definition of differentiability:



DEFINITION Differentiable Function

A function z = f(x, y) is differentiable at (xg, yo) if f.{xq, yo) and f,(xo, yo)
exist and Az satisfies an equation of the form

Az = fi(xg, yo)Ax + fx0, yo)Ay + €1Ax + €4y,

in which each of €|, €2 — 0 as both Ax, Ay — 0. We call f differentiable if it is
differentiable at every point in its domain.

Note in particular that for z = f(z,y), differentiability is more than the ezistence of the
partial derivatives, as becomes also clear from the following statement:

If f, and f, are continuous throughout an open region R, then f is differentiable at every
point of R.

It also holds, in analogy to functions of a single variable:
If a function f(x,y) is differentiable at a point (z¢,yo) then f is continuous at (zq, yo).

If you are interested in the details underlying the above statements, like the Increment
Theorem, please check out Thomas’ Calculus p.771/772.

The Chain Rule

Reminder: Chain Rule for Function of One Variable

If w = f(x) is a differentiable function of x and = = g(t) is a differentiable function of ¢,
then
dw dwdx

At dxdt”
Similarly:

Theorem: Chain Rule for Functions of Two Variables

If w = f(x,y) is differentiable and if x = x(t), y = y(t) are differentiable functions of ¢, then
w = f(x(t),y(t)) is a differentiable function of ¢ and

dw 8wd_a: aw%

A oxdt T oyar

This straightforwardly follows from the above definition of differentiability.

We can easily extend this theorem to functions w = f(z,y, z) of three variables:

dw 8wdx+8wdy+8wdz
dt — Oxdt Oy dt Ozdt’

We can use tree diagrams to illustrate the application of the Chain Rule:
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(a) To find dw/dt, start at w and read down each route to ¢, multiplying derivatives along
the way; then add the products. (b) For functions of three variables there are three routes
from w to t instead of two, but finding dw/dt is still the same: read down each route,
multiplying derivatives along the way; then add.

Example:

Use the Chain Rule to find the derivative of w = xy with respect to t along the path
r = cost, y =sint.

dw Owdx

dw __+8wdy_
At Oz dt

dy dt

y(—sint) + z(cost) = —sin®t + cos’t = cos 2t .

Note that we could have done this more directly by noting that

dw

1
= —-.2cos2t = cos2t.
dt 2

1
w=1xy = costsint = Esith;

If w= f(x,y) where x = g(r,s) and y = h(r, s) then

ow B 8w@

ow _ ow Ow Oy
or  Ox Or

8_y8r

ow B 8w%

ow _ dw Ow Oy
ds  Ox Os

6_y ds
and in analogy for functions w = f(x,y, z). Also, if w = f(z) and = = ¢(r, s) then

ow B dw 0x

Ow _ dwdx aw_dwﬁ_x
or  dx or

Os  dr O0s’

Example:
For u = w(x,y, z), express Ow/0r and Ow/0s in terms of r and s if

r
w=zr+2y+2>, z=-, y=r+Ins, z=2r.
s



We have
ou _ owdz owdy  owd:
or  OdxOr Oyor 0z0r
1 1
= (1) (;) + (2)(2r) + (22)(2) = B + 12r
and

ow _ owdr  dwdy | dwo:
ds Or ds Oy ds 0z 0s

—r 1 2 r

- w(F)re(3)reao=-2-1

s s2

Suppose that w = F(x,y) is differentiable and that F'(x,y) = 0 defines y (implicitly) as a
differentiable function of . Then
dw dx dy

dx dx+ Ydx Ty

dy
dr
Hence, at any point where Fj # 0,

dy  F,

dr = F,’

Y

This is the Formula for Implicit Differentiation.

Example:
Find dy/dz if y* — 22 — sinay = 0.

F(z,y) = y*—a* —sinay
dy F, (=27 —ycosxy) 2x+ycosxy

de F, (2y — x coszy) C 2y —zcosay
You may wish to compare this method with the one that you have learned in Calculus 1,

i.e., differentiating the whole equation with respect to = and then solving for dy/dz.

Directional Derivatives and Gradient Vectors

We now investigate the derivative of a function f(z,y) at a point in a particular direction:

DEFINITION Directional Derivative

The derivative of f at Py(xy, yp) in the direction of the unit vector u = u;i +
l2j is the number

df . flxo + suy, vo + su2) — flxo, v0)
T = lim =
d.\' uPy g—=() &

(1)

provided the limit exists.




It is also denoted by (D, f) p, as the derivative of f at the point /4 in the direction of the
unit vector u. The meaning is illustrated in the following figure:

Z

Surface S:

% — f{s, f(xo + suy, Yo + suy) — f(xo, Yo)

(xg + suy,yg + suy)
Po(x.o, yo) u= uli + uzj

We can develop a more efficient formula for the directional derivative by considering the line
T =0+ sup, Y = Yo + Suz

through the point Py(zo, yo), parametrised with the arc length parameter s increasing in the
direction of the unit vector u = u1i + usj. Then

<%> = <g—£> j—i + <g—£> % (via the Chain Rule)
u, Py Py Py
_ (of of
a (%)Po “r (a_y> Po U2
- [(%) i+ (Z—‘?)j) j] Juad + uaj]
Py Py



