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Irrational powers of real numbers

Lemma

Suppose a is a positive real number and q ∈ Q. Then

aq = exp(q ln a) .
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Irrational powers of real numbers
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Suppose a is a positive real number and q ∈ Q. Then

aq = exp(q ln a) .

Definition For any a ∈ R with a > 0, the exponential function

with base a, ax , is defined by putting

ax = exp(x ln a)

for all x ∈ R.
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Irrational powers of real numbers

Lemma

Suppose a is a positive real number and q ∈ Q. Then

aq = exp(q ln a) .

Definition For any a ∈ R with a > 0, the exponential function

with base a, ax , is defined by putting

ax = exp(x ln a)

for all x ∈ R.

This definition implies that

ln(ax) = ln[exp(x ln a)] = x ln a

for all x ∈ R.
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Properties of the exponential function with base a

Lemma

Suppose a, b, c ∈ R and a > 0. Then:

1 ab · ac = ab+c :

2 (ab)c = abc .
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Properties of the exponential function with base a

Lemma

Suppose a, b, c ∈ R and a > 0. Then:

1 ab · ac = ab+c :

2 (ab)c = abc .

Theorem

Suppose that a > 0 and a 6= 1. Then the exponential function with

base a is differentiable for all x ∈ R and satisfies

d

dx
ax = ax ln a .

Hence
∫

ax dx =
ax

ln a
+ C .
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Logarithms to the base a

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f (x) = ax

is strictly increasing for all x ∈ R.
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Logarithms to the base a

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f (x) = ax

is strictly increasing for all x ∈ R.
When 0 < a < 1, a similar argument shows that f (x) = ax is
strictly decreasing for all x ∈ R.
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Logarithms to the base a

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f (x) = ax

is strictly increasing for all x ∈ R.
When 0 < a < 1, a similar argument shows that f (x) = ax is
strictly decreasing for all x ∈ R.
This implies that f (x) = ax is injective for any fixed a > 0 with
a 6= 1. Hence its inverse function exists. This inverse function is
called the logarithm of x to the base a and is denoted by loga x .
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Logarithms to the base a

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f (x) = ax

is strictly increasing for all x ∈ R.
When 0 < a < 1, a similar argument shows that f (x) = ax is
strictly decreasing for all x ∈ R.
This implies that f (x) = ax is injective for any fixed a > 0 with
a 6= 1. Hence its inverse function exists. This inverse function is
called the logarithm of x to the base a and is denoted by loga x .
We have

loga(a
x) = x = aloga x

for all x ∈ R, by the definition of an inverse function.
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Logarithms to the base a

Definition When a > 1, d
dx
ax = ax ln a > 0 and hence f (x) = ax

is strictly increasing for all x ∈ R.
When 0 < a < 1, a similar argument shows that f (x) = ax is
strictly decreasing for all x ∈ R.
This implies that f (x) = ax is injective for any fixed a > 0 with
a 6= 1. Hence its inverse function exists. This inverse function is
called the logarithm of x to the base a and is denoted by loga x .
We have

loga(a
x) = x = aloga x

for all x ∈ R, by the definition of an inverse function.
This gives

ln x = ln
(

aloga x
)

= loga x · ln a .
and hence

loga x =
ln x

ln a
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Further properties of the exponential function

The definition of ax gives us an alternative notation for exp(x).
Recall that 1 = ln e where e is Euler’s constant. This implies that

ex = exp(x ln e) = exp x .

We often use ex for exp x .
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Further properties of the exponential function

The definition of ax gives us an alternative notation for exp(x).
Recall that 1 = ln e where e is Euler’s constant. This implies that

ex = exp(x ln e) = exp x .

We often use ex for exp x .

We have seen that d
dx
ex = ex . This gives

∫

exdx = ex + C .
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Further properties of the exponential function

The definition of ax gives us an alternative notation for exp(x).
Recall that 1 = ln e where e is Euler’s constant. This implies that

ex = exp(x ln e) = exp x .

We often use ex for exp x .

We have seen that d
dx
ex = ex . This gives

∫

exdx = ex + C .

We can now use the chain rule to deduce:

Lemma

Let f (x) be a differentiable function. Then

d

dx
ef (x) = ef (x)f ′(x)

and
∫

ef (x)f ′(x)dx = ef (x) + C .
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The number e as a limit

Theorem

e = lim
x→0

(1 + x)1/x
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Techniques of Integration

Basic formulas, see integration tables (Thomas’ Calculus,
page 435 and more extensive tables pages T1-T6)

Procedures for matching integrals to basic formulas

Other techniques (substitution, integration by parts, partial
fractions)

This needs practice, practice, practice, . . .:

Exercise sheet 10 and online exercises sets 9,10
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Basic formulas
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Procedures for matching integrals to basic formulas
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Integration by parts
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Integration by parts

Similarly
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Integration by parts

Similarly

Example: Evaluate
∫

x cos x dx :

Bill Jackson Calculus I



Integration by parts - general strategy

Choose u such that du is “simpler” than u;

Choose dv such that vdu is easy to integrate;

If your result looks more complicated after doing integration
by parts, it’s most likely not right. Try something else.
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Integration by parts - general strategy

Choose u such that du is “simpler” than u;

Choose dv such that vdu is easy to integrate;

If your result looks more complicated after doing integration
by parts, it’s most likely not right. Try something else.

Read Thomas’ Calculus, Section 8.1, examples 3 to 6
and practice by doing online exercise set 10
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The method of partial fractions

Example 1: If we know that

5x − 3

x2 − 2x − 3
=

2

x + 1
+

3

x − 3

then we can easily integrate

∫

5x − 3

x2 − 2x − 3
dx =

∫

2

x + 1
dx +

∫

3

x − 3
dx

= 2 ln |x + 1|+ 3 ln |x − 3|+ C

To obtain such simplifications, we use the method of partial

fractions.
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The method of partial fractions

Example 2 (repeated linear factor). Find

∫

6x + 7

(x + 2)2
dx .
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The method of partial fractions

Example 2 (repeated linear factor). Find

∫

6x + 7

(x + 2)2
dx .

Read Thomas’ Calculus Section 8.4, examples 1, 4, 5
and practice by doing online exercise set 10.
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Improper integrals

Can we compute areas under infinitely extended curves?
Two examples of improper integrals:

Type 1: area extends from x = 1 to x = ∞.
Type 2: area extends from x = 0 to x = 1 but f (x) only defined
on (0, 1].
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Improper integrals - Examples

Example of type 1: Find

∫

∞

0
e−x/2 dx
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Improper integrals - Examples

Example of type 1: Find

∫

∞

0
e−x/2 dx

Example of type 2: Find

∫ 1

0

1√
x
dx
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Improper integrals - Examples

Example of type 1: Find

∫

∞

0
e−x/2 dx

Example of type 2: Find

∫ 1

0

1√
x
dx

Read Thomas’ Calculus Section 8.7, examples 1 to 5
and practice by doing online exercise set 10.
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