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Irrational powers of real numbers

We have defined what we mean by a? for any real number a > 0 and any rational number q.
We can use the exponential function to extend this to a definition of a* when x is irrational
ie. x € R\ Q. We first express a? in terms of the exponential function.

Lemma 1 Suppose a is a positive real number and q € Q. Then
a’ =exp(glna). (1)
Proof The fourth rule for manipulating natural logarithms tells us that
Ina? =¢glna.
Taking the exponential of both sides of this equation (and using exp = In~") gives
a? = exp(lna?) = exp(gqlna).

Since the right hand side of (1) makes sense for all ¢ € R we can use it define a® for all real
numbers x.

Definition For any a € R with a > 0, the exponential function with base a, a” is defined
by putting
a® =exp(zlna)

for all z € R.
Note that this definition implies that

In(a”) = Infexp(xIna)] = xIna (2)

and hence that the fourth rule for manipulating natural logarithms holds for all powers of
a, not just rational powers.
For the definition of a® to make sense we will need the exponent in a” to behave in the same

way as exponents for integer or rational powers of a. This follows from our next result.

Lemma 2 Suppose a is a positive real number and b,c € R. Then:



b

Proof By definition a” = exp(blna) and a® = exp(cIna). Hence

a’-a® = exp[ln(a’ - a)]
= exp[In(a®) + In(a®)] (by the first rule for manipulating logs)
= explbln(a) + cln(a)] (by 2)
— expl(b+ ) In(a))
— abJrc
Similarly
(a®)* = exp(clna®)
= exp(cbln(a))
= a”.

Note: The exponential function with base a is differentiable for all x € R and

d d

o :%exp(xlna):exp(xlna)-lna:a Ina
/axdx: T 1o
Ina

Definition When a > 1, ©La® = a¢”Ina > 0 and hence f(z) = a® is strictly increasing for
all z € R. When 0 < a < 1, a similar argument shows that f(z) = a” is strictly decreasing
for all x € R. This implies that f(z) = a” is injective for any fixed a > 0 with a # 1. Hence
its inverse function exists. This inverse function is called the logarithm of x to the base a
and is denoted by log, z. We have

by the chain rule. Hence

when a > 0 and a # 1.

log,(a") = x = a8

for all x € R. This gives
Inz =1In(a"%") =log,z - Ina.

and hence

Note: The algebra for log, x is precisely the same as that for Inz.

Further properties of the exponential function

The above definition of a” gives us an alternative notation for exp(z). Recall that 1 =1Ine
where e is Euler’s constant. This implies that

e’ =exp(xlne) =expux.

Henceforth we will often use e” instead of exp x.



We have seen that %em = ¢e”. This gives
/ edr =¢e"+ C'.

We can now use the chain rule to deduce:

Lemma 3 Let f(x) be a differentiable function. Then

dx
and
/ef(m)f'(x)dx =@ 1 C
Examples:
1.
d sinx sinx : sinx
— =M —sginr =e¢ CoS T
dx dx
2.
In2 In8 1
/ dr = / e —du
0 0 3
1 In8
—= —eu
3 0
_ T
3

We defined e via Ine = 1 and stated e = 2.718281828459 . . ..

Theorem 1 (The number e as a limit)

e = lim(1 + z)"/*

xz—0

Proof We have

In <1i1r(1)(1 + x)l/x) = lim (In(1 + 2)"/7) (continuity of Inz )
T—

z—0

z—0 \ &

: 1 A
= }}12% T2 ("'Hopital)
= 1

1
= lim (— In(1+ x)) (power rule)

Taking exponentials of both sides gives:

lim(1 + )% = exp [ln (hr]%(l + x)l/zﬂ =expl=e.
T—

z—0



Techniques of Integration
e Basic properties (Thomas’ Calculus, Chapter 5)

e Basic formulas, see integration tables (Thomas’ Calculus, page 435 and more extensive
tables on pages T1-T6)

e Procedures for matching integrals to basic formulas
e Other techniques (substitution, integration by parts, partial fractions)

This needs practice, practice, practice, .. .:

‘Exercise sheet 10 and online exercise sets 9 and 10‘

TABLE 8.1 Basic integration formulas

l.fdu=u+C 13.

2. fkdu =ku+ C (any number &)

14. /e"’a’u ="+ C
f(du + dv) = /du /dv f

cotudu = In |sinu| + C

= —lIn|cscu| + C

3.
15. “duﬂ— C (@>0,a#1)
fn —
4./udu—n+]+C (n# —1)
du 16. /sinhudu = coshu + C
5. =In|u| +C
17. /cosh udu = sinhu + C
6. [sinudu = —cosu + C
dh' e u
18. /7=sm](—)+C
7. fcosudu=sinu+C Va? — u? 2
du 1, - (u)
19./ = —f{an -1+ C
8. [scczudu =tanu + C at+ur 4 i
! du I qlu
20. ————=—5e¢ |5 |+t C
9, /csczudu= —cotu + C ./u\/uz— a2 #
du P 7]
10. fsecutamtdu =secu + C A /\/az T2 sl (“’) + € (@>0)
du - 1 fu
11. fcscucotzfdz(=—cscu+c 22. fmucosh (ﬂ)+c u>a>0)
12. /tanudu = —In |cosu| + C

= In|secu| + C




Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying vfl'_—g di = iﬁ’_
substitution x° =9+ 1 %
Completing the square Ve - x2 = V16 - (x — 4)?

Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan’x
identity = sec’x + 2secxtanx

+ (seclx — 1)
= 2secx + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos?2x = V2 |cos 2x|

_ _ -7 6
Reducing an improper Syt YT 3taia

fraction

Separating a fraction e+ 2 33X 2
Vi-x2 Vi-x2 Vi-i?

secx + tanx
secx + tanx

Multiplying by a form of 1 secx = secx-

_ sec’x + secxtanx
secx + tanx

‘See exercise sheet 10 and online exercise set 9 for further examples

Integration by parts

We have seen that the chain rule for differentiation gives rise to the substitution law for
integration. The technique of integration by parts can be derived from the product rule for
differentiation in a similar way. For any two differentiable functions f and g we have

L (@) = P @) + f@)g ().

Integrate both sides of this equation gives
[ 5 G@g@yds = [ (@gta) + s (a) ds.
dx

Therefore,
f(@)g(z) = / F(@)g(x)dx + / f(2)g (x)de

leading to



/f(x]g’{x) dx = f(x)g(x) — /f'(x]g(x}dr (1)

Putting u = f(x) and v = g(z) this formula can be abbreviated to

Integration by Parts Formula

/udv=uv—/vdu (2)

Similarly

Integration by Parts Formula for Definite Integrals

b
1w s = o], / £ (x)g(x) ds G

Example: Evaluate

/ZL‘COSl'd:L‘ :

Let w = z and dv = cosxzdxr . Then du = dxr and v = sinx. The integration by parts
formula now gives:

/:pcosxd:p::psinx—/sinxdx

=wsinz +cosx + C (Do not forget the constant C').
Let’s explore the four possible choices of u and dv for [z cosx du:

1. u=1, dv=xcosxdx:
We don’t know of how to compute [ dv: no good!

2. u =z and dv = cos x dx:
Done above, works!

3. u=cosx, dv = xdx:
Now du = —sinz dx and v = 2?/2 so that

1 1
/l’COSIL‘dl':§$2COS$+/§$2SiDl’de‘

This makes the situation worsel!



4. uw=xcosz and dv = dx:
Now du = (cosx — xsinz)dx and v = x so that

/xcosxdx:xzcosx—/x(cosx—xsinx)dx

This again is worse!

General advice:
e Choose u such that du is “simpler” than wu;
e Choose dv such that vdu is easy to integrate;

e [f your result looks more complicated after doing integration by parts, it’s most likely
not right. Try something else.

Read Thomas’ Calculus:

Section 8.1, examples 3 to 6:
Four further examples of integration by parts...
...and practice by doing online exercise set 10

The method of partial fractions
Example: If we know that

or — 3 2 3

x2—2x—3_x+1+x—3

then we can easily integrate

5 — 3 2 3
R R d
/x2—2x—3x /x+1x+/x—3

= 2Injz+1|+3njz-3[+C

dx

To obtain such simplifications, we use the method of partial fractions.
Let f(x)/g(z) be a rational function, for example,

flx)  22° —4a® -2 -3

glz)  22-22-3

If deg(f) > deg(g), we first use polynomial division:

203 —4x? —x — 3 % + 5 — 3
—= €T _
2 —2x —3 2 —2x —3

and consider the remainder term. We also have to know the factors of g(z):

2? —2r 3= (z+1)(z—3)



Now we can write

fzr—3 A N B
2—2r—3 x+1 z-—3

and obtain
b —3=A(x—3)+B(x+1)=(A+ B)r+ (—3A+ B).

We can now equate the coefficients of the same powers of = to obtain A + B = 5 and
—3A+ B = 3. Solving these two simultaneous equations gives A = 2, and B = 3 as above.!

Method of Partial Fractions ( f(x)/g(x) Proper)

1. Letx — rbe a linear factor of g(x). Suppose that (x — r)" is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:
A]_ Az A}"
=¥ frsmapp
YU (x =) 233 )

Do this for each distinct linear factor of g(x).

2. Letx? + px + g be a quadratic factor of g(x). Suppose that (x* + px + ¢)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:

Bix + C " Byx + (G i + B.x + C,
X +pe+qg  (x*+px+g)P (x* + px + )"
Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

Example (of a repeated linear factor). Find
6x +7
———dx .
/ (x+2)2 ’

6+ 7 A B

(z +2)? _x—|—2+(x+2)2'

e Write

e Multiply by (z + 2)? to get

6r+7=A(x+2)+B=Ax+ (2A+B).

For this example we could also substitute z = —1 in the equation 5z — 3 = A(z — 3) + B(x + 1) to
obtain A = 2, and substitute x = 3 to obtain B = 3.
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e Equate coefficients of the same powers of x and solve:

A=6and2A+B=7= B =-5.

e Integrate:

6z + 7 dx dx 4
— dr = — —— =61 2 +5 2 C.
/(x+2)2x 6/95—1—2 5/(x—|—2)2 6ln|z+2|+5(x+2)" +

Read Thomas’ Calculus:
Section 8.4, examples 1, 4 and 5:
Three more advanced examples. ..
...and practice by doing online exercise set 10.

Improper integrals

Can we compute areas under infinitely extended curves?
Two examples of improper integrals:

= y=inx
0.2 - o

Type 1: area extends from z = 1 to x = oo.
Type 2: area extends from x = 0 to x = 1 but f(z) diverges at x = 0.

Calculation of type I improper integrals in two steps.

Example: 3 = ¢=/2 on [0, 00)

1. Calculate bounded area:




2. Take the limit:

lim A(b) = lim (=272 +2) =2

b—o0 b—o0

= / e Pdy = 2
0

DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type 1.

1. [f f(x) is continuous on [a, ), then
lo4] f
j; flx)dx = "?]l»r['}G ; flx) dx.

2. If f(x) is continuous on (—00, b], then

ff(.r)aix— lim f flx)dx.

3. If f(x) is continuous on (—00, 00), then

f " fididem f " foydx + / " ) d,

where ¢ is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.

Calculation of type II improper integrals in two steps.
Example: y = 1/y/x on (0, 1]
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y
y=-L 1. Calculate bounded area:
Vi 1
d
A(a):/ = —avr|l=2-2va
Ve Y
Area =2 — 2Va
2. Take the limit:
1+ lim A(a) = lim (2 —2 =2
Jp, Ala) = lip 2 =2)
1
dx
= — =2
0| a 1 * /0 N&
-

DEFINITION  Type II Improper Integrals

Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type 1L

1. If f(x) is continuous on (a, b] and is discontinuous at a then
b b
/ flx)dx = lim | f(x)dx.
a c—=*a [

2. If f(x) is continuous on [a, b) and is discontinuous at b, then
)

b ¢
f flx)dv = lim / f(x) dx.

3. If f(x) is discontinuous at ¢, where @ < ¢ < b, and continuous on
[a. ¢) U (e, b], then

b ¢ b
ff(.r)a'Jc:f f(x)dx+[ flx) dx.

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.

Read Thomas’ Calculus:
Section 8.7, examples 1 to 5:
Five more examples. ..
...and practice by doing online exercise set 10.




