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Total area

Example: Find the total area between the graph of
f (x) = x3 − x2 − 2x and the x-axis over the interval [−1, 2].
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Total area

Example: Find the total area between the graph of
f (x) = x3 − x2 − 2x and the x-axis over the interval [−1, 2].

In general, to find the total area between the graph of y = f (x)
and the x-axis over the interval [a, b], do the following:

1 Draw a graph of f .

2 Subdivide [a, b] at the zeros of f .

3 Integrate over each subinterval.

4 Add the absolute values of these integrals.
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Symmetric functions

Theorem

Let f be a continuous function on the interval [−a, a].

(a) If f is even, then
∫ a

−a
f (x)dx = 2

∫ a

0 f (x)dx.

(b) If f is odd, then
∫ a

−a
f (x)dx = 0.

(c) If f is either even or odd, then the total area between the

graph of y = f (x) and the x-axis over the interval [−a, a] is
twice the total area between the graph of y = f (x) and the

x-axis over the interval [0, a].
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Areas between curves

We want to find the area between two curves y = f (x) and
y = g(x) for x ∈ [a, b], where f (x) ≥ g(x) for all x ∈ [a, b].
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Areas between curves

We want to find the area between two curves y = f (x) and
y = g(x) for x ∈ [a, b], where f (x) ≥ g(x) for all x ∈ [a, b].

We can estimate this area A as a limit of Riemann sums of vertical
rectangles of height f (x)− g(x) and width ∆x . This gives:

A =

∫ b

a

f (x) − g(x) dx
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Areas between curves

We want to find the area between two curves y = f (x) and
y = g(x) for x ∈ [a, b], where f (x) ≥ g(x) for all x ∈ [a, b].

We can estimate this area A as a limit of Riemann sums of vertical
rectangles of height f (x)− g(x) and width ∆x . This gives:

A =

∫ b

a

f (x) − g(x) dx

Example: Find the area of the region R that is enclosed by the
curves y =

√
x , y = 0, and y = x − 2.
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.

Thus a function is injective if it takes on every value in its range
exactly once.
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R → R be defined by f (x) = x3 and
g : R+ → R be defined by g(x) =

√
x , where

R+ = {x ∈ R : x ≥ 0}.
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R → R be defined by f (x) = x3 and
g : R+ → R be defined by g(x) =

√
x , where

R+ = {x ∈ R : x ≥ 0}.
The horizontal line test for injective functions: A function is
injective if and only if its graph intersects every horizontal line at
most once.
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R → R be defined by f (x) = x3 and
g : R+ → R be defined by g(x) =

√
x , where

R+ = {x ∈ R : x ≥ 0}.
The horizontal line test for injective functions: A function is
injective if and only if its graph intersects every horizontal line at
most once.

Examples: Let f : R → R be defined by f (x) = x2 and
g : [0, π] → R be defined by g(x) = sin x .
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Injective (one-to-one) functions

Definition Let f : D → R be a function. Then f is injective (or
one-to-one) if f (x1) 6= f (x2) whenever x1 6= x2.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R → R be defined by f (x) = x3 and
g : R+ → R be defined by g(x) =

√
x , where

R+ = {x ∈ R : x ≥ 0}.
The horizontal line test for injective functions: A function is
injective if and only if its graph intersects every horizontal line at
most once.

Examples: Let f : R → R be defined by f (x) = x2 and
g : [0, π] → R be defined by g(x) = sin x .

Note that if we restrict the domain of f to R+ = {x ∈ R : x ≥ 0}
and the domain of g to [0, π/2] then the restricted functions will
both be injective.
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:

the domain of f −1 is equal to the range of f and the range of
f −1 is equal to the domain of f .
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:

the domain of f −1 is equal to the range of f and the range of
f −1 is equal to the domain of f .

f −1 is read as f inverse.
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:

the domain of f −1 is equal to the range of f and the range of
f −1 is equal to the domain of f .

f −1 is read as f inverse.

f −1(x) 6= 1/f (x) i.e. f −1(x) is not the same as f (x)−1.
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:

the domain of f −1 is equal to the range of f and the range of
f −1 is equal to the domain of f .

f −1 is read as f inverse.

f −1(x) 6= 1/f (x) i.e. f −1(x) is not the same as f (x)−1.

(f −1 ◦ f )(x) = x for all x ∈ D.
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Inverse functions

Definition Suppose that f : D → R is an injective function with
range R . Then the inverse function f −1 : R → D is defined by

f −1(y) = x whenever f (x) = y .

Note that:

the domain of f −1 is equal to the range of f and the range of
f −1 is equal to the domain of f .

f −1 is read as f inverse.

f −1(x) 6= 1/f (x) i.e. f −1(x) is not the same as f (x)−1.

(f −1 ◦ f )(x) = x for all x ∈ D.

(f ◦ f −1)(y) = y for all y ∈ R .
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Method for finding inverse functions

Example: Find the inverse of the function f : R+ → R defined by
f (x) = x2.
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Method for finding inverse functions

Example: Find the inverse of the function f : R+ → R defined by
f (x) = x2.

Step 1 Solve y = f (x) for x . We have y = x2 and x ≥ 0 so x =
√
y .

Since the domain and range of f is R+, we obtain

f −1 : R+ → R+ by x = f −1(y) =
√
y
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Method for finding inverse functions

Example: Find the inverse of the function f : R+ → R defined by
f (x) = x2.

Step 1 Solve y = f (x) for x . We have y = x2 and x ≥ 0 so x =
√
y .

Since the domain and range of f is R+, we obtain

f −1 : R+ → R+ by x = f −1(y) =
√
y

Step 2 Relabel x and y so that y is the dependent variable and x is
the independent variable. This gives:

f −1 : R+ → R+ by y = f −1(x) =
√
x
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Relationship between graphs of f and f
−1

Lemma

The graphs of f and f −1 are interchanged by reflection in the line

y = x.
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Relationship between graphs of f and f
−1

Lemma

The graphs of f and f −1 are interchanged by reflection in the line

y = x.

Example The graphs of f (x) = x2 and f −1(x) =
√
x .
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Derivatives of inverse functions

Theorem

Suppose that f : D → R is injective, differentiable and f ′(x) 6= 0
for all x ∈ D. Then f −1 is differentiable and its derivative (f −1)′

satisfies

(f −1)′(x) =
1

f ′(f −1(x))
.

Equivalently, for all b in the domain of f −1 we have

df −1

dx

∣

∣

∣

∣

x=b

=
1

df
dx

∣

∣

x=f −1(b)

.
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Derivatives of inverse functions

Theorem

Suppose that f : D → R is injective, differentiable and f ′(x) 6= 0
for all x ∈ D. Then f −1 is differentiable and its derivative (f −1)′

satisfies

(f −1)′(x) =
1

f ′(f −1(x))
.

Equivalently, for all b in the domain of f −1 we have

df −1

dx

∣

∣

∣

∣

x=b

=
1

df
dx

∣

∣

x=f −1(b)

.

Example f : R+ → R by f (x) = x2.
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The Natural Logarithm Function

Definition Consider the function f (x) = x−1. This is continuous
on the closed interval [a, b] for any 0 < a < b.
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The Natural Logarithm Function

Definition Consider the function f (x) = x−1. This is continuous
on the closed interval [a, b] for any 0 < a < b.
The Fundamental Theorem of Calculus (Part 1) now tells us that
F (x) =

∫ x

1 t−1dt is continuous on [a, b] and differentiable on (a, b)
for all 0 < a < b.
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The Natural Logarithm Function

Definition Consider the function f (x) = x−1. This is continuous
on the closed interval [a, b] for any 0 < a < b.
The Fundamental Theorem of Calculus (Part 1) now tells us that
F (x) =

∫ x

1 t−1dt is continuous on [a, b] and differentiable on (a, b)
for all 0 < a < b.
This function F is an important function: it is called the natural

logarithm function and is denoted by ln. Thus

ln x =

∫ x

1
t−1 dt .
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Properties of the natural logarithm function

Lemma

The domain of ln x is (0,∞) and its derivative is x−1.
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Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then

1 ln ax = ln a + ln x.

2 ln 1
x
= − ln x.

3 ln a
x
= ln a − ln x.

4 ln xq = q ln x for any rational number q.
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Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then

1 ln ax = ln a + ln x.

2 ln 1
x
= − ln x.

3 ln a
x
= ln a − ln x.

4 ln xq = q ln x for any rational number q.

Examples:

1 ln 8 + ln cos x =

2 ln
z2 + 3

2z − 1
=

3 ln cot x =

4 ln 5
√
x − 3 =

Bill Jackson Calculus I



Range of the natural logarithm function

Lemma

The range of ln x is (−∞,∞).
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Range of the natural logarithm function

Lemma

The range of ln x is (−∞,∞).

Definition The fact that the range of ln x is (−∞,∞) implies in
particular that ln x = 1 for some x ∈ (0,∞). The point e for which
ln e = 1 is referred to as Euler’s constant or the base of the natural

logarithm. Its approximate numerical value is

e = 2.718281828459 . . .
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Antiderivatives involving the natural logarithm

We have seen that ln x is an antiderivative for 1/x for any interval
I ⊂ (0,∞). Our next result extends this to all intervals which do
not contain zero.
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Antiderivatives involving the natural logarithm

We have seen that ln x is an antiderivative for 1/x for any interval
I ⊂ (0,∞). Our next result extends this to all intervals which do
not contain zero.

Theorem

Let I be an interval. If 0 6∈ I then ln |x | is an antiderivative for

f (x) = 1/x on I . More generally , if g(x) is non-zero and

differentiable on I , then ln |g(x)| is an antiderivative for

g ′(x)/g(x) on I .
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Antiderivatives involving the natural logarithm

We have seen that ln x is an antiderivative for 1/x for any interval
I ⊂ (0,∞). Our next result extends this to all intervals which do
not contain zero.

Theorem

Let I be an interval. If 0 6∈ I then ln |x | is an antiderivative for

f (x) = 1/x on I . More generally , if g(x) is non-zero and

differentiable on I , then ln |g(x)| is an antiderivative for

g ′(x)/g(x) on I .

Example For x ∈ (−π/2, π/2) we have

∫

tan xdx = ln | sec x |+ C
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The Exponential Function

Definition The natural logarithm function is injective and hence is
invertible. Its inverse function exp(x) = ln−1(x) is called the
exponential function.
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Properties of the exponential function

Lemma

The domain of exp x is R and its range is (0,∞). The derivative of

exp x is exp x.
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Powers of e

Recall that 1 = ln e where e is Euler’s constant.
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Powers of e

Recall that 1 = ln e where e is Euler’s constant.
The fourth rule for manipulating natural logarithms now gives

ln eq = q ln e = q

for any q ∈ Q.
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Powers of e

Recall that 1 = ln e where e is Euler’s constant.
The fourth rule for manipulating natural logarithms now gives

ln eq = q ln e = q

for any q ∈ Q.
Applying the function exp to both sides gives

eq = exp(ln eq) = exp q

for all q ∈ Q.
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Powers of e

Recall that 1 = ln e where e is Euler’s constant.
The fourth rule for manipulating natural logarithms now gives

ln eq = q ln e = q

for any q ∈ Q.
Applying the function exp to both sides gives

eq = exp(ln eq) = exp q

for all q ∈ Q.
Since the right hand side of this equation, exp q, is defined for all
q ∈ R, we can use it to define what ex means when x ∈ R \Q.
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Powers of e

Recall that 1 = ln e where e is Euler’s constant.
The fourth rule for manipulating natural logarithms now gives

ln eq = q ln e = q

for any q ∈ Q.
Applying the function exp to both sides gives

eq = exp(ln eq) = exp q

for all q ∈ Q.
Since the right hand side of this equation, exp q, is defined for all
q ∈ R, we can use it to define what ex means when x ∈ R \Q.

Definition For every x ∈ R, put ex = exp x .
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Rules for manipulating powers of e

The definition of ex makes sense only because ex = exp x satisfies
the usual rules for powers:

Lemma

Suppose a, b ∈ R. Then

1 ea · eb = ea+b

2 e−a = 1/ea

3 ea/eb = ea−b

4 (ea)b = eab
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Read

Thomas’ Calculus:

Section 7.7 Inverse trigonometric functions,
and Section 7.8, Hyperbolic functions
You will need this information for

coursework 10!
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