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Total area

Example: Find the total area between the graph of
f(x) = x3 — x? — 2x and the x-axis over the interval [-1,2].
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Total area

Example: Find the total area between the graph of
f(x) = x3 — x? — 2x and the x-axis over the interval [-1,2].

In general, to find the total area between the graph of y = f(x)
and the x-axis over the interval [a, b], do the following:

© Draw a graph of f.

© Subdivide [a, b] at the zeros of f.

© Integrate over each subinterval.

© Add the absolute values of these integrals.
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Symmetric functions

Theorem
Let f be a continuous function on the interval [—a, a].

(a) If f is even, then [ f(x)dx =2 [; f(x)dx.

(b) Iff is odd, then [° f(x)dx = 0.

(c) If f is either even or odd, then the total area between the
graph of y = f(x) and the x-axis over the interval [—a, a] is
twice the total area between the graph of y = f(x) and the
x-axis over the interval [0, a].

y y

—a v \jﬂ x
x

(a) (b)
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Areas between curves

We want to find the area between two curves y = f(x) and

y = g(x) for x € [a, b], where f(x) > g(x) for all x € [a, b].
y

Upper curve

y=r® [

a

1 X
T b

Lower curve
y =gk
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Areas between curves

We want to find the area between two curves y = f(x) and

y = g(x) for x € [a, b], where f(x) > g(x) for all x € [a, b].
y

Upper curve

y=r® [

a

1 X
T b

Lower curve
y =gk

We can estimate this area A as a limit of Riemann sums of vertical
rectangles of height f(x) — g(x) and width Ax. This gives:

b
A :/ f(x) — g(x) dx
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Areas between curves

We want to find the area between two curves y = f(x) and

y = g(x) for x € [a, b], where f(x) > g(x) for all x € [a, b].
y

Upper curve

y=r® [

a

1 X
T b

Lower curve
y =gk

We can estimate this area A as a limit of Riemann sums of vertical
rectangles of height f(x) — g(x) and width Ax. This gives:

b
A :/ f(x) — g(x) dx

Example: Find the area of the region R that is enclosed by the
curves y = /x, y =0, and y = x — 2.



Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.
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Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.

Thus a function is injective if it takes on every value in its range

exactly once.
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Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R — R be defined by f(x) = x3 and
g : RT™ — R be defined by g(x) = v/x, where
Rt ={xeR: x>0}
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Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R — R be defined by f(x) = x3 and
g : RT™ — R be defined by g(x) = v/x, where
Rt ={xeR: x>0}

The horizontal line test for injective functions: A function is
injective if and only if its graph intersects every horizontal line at
most once.
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Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.
Thus a function is injective if it takes on every value in its range

exactly once.

Examples: Let f : R — R be defined by f(x) = x3 and

g : RT™ — R be defined by g(x) = v/x, where

Rt ={xeR: x>0}

The horizontal line test for injective functions: A function is
injective if and only if its graph intersects every horizontal line at
most once.

Examples: Let f : R — R be defined by f(x) = x? and
g : [0, 7] — R be defined by g(x) = sin x.
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Injective (one-to-one) functions

Definition Let f : D — R be a function. Then f is injective (or
one-to-one) if f(x1) # f(x2) whenever x; # x.

Thus a function is injective if it takes on every value in its range
exactly once.

Examples: Let f : R — R be defined by f(x) = x3 and

g : RT™ — R be defined by g(x) = v/x, where

Rt ={xeR: x>0}

The horizontal line test for injective functions: A function is

injective if and only if its graph intersects every horizontal line at
most once.

Examples: Let f : R — R be defined by f(x) = x? and
g : [0, 7] — R be defined by g(x) = sin x.
Note that if we restrict the domain of f to Rt = {x € R : x > 0}

and the domain of g to [0,7/2] then the restricted functions will
both be injective.
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Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.

Note that:

Bill Jackson Calculus |



Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.
Note that:

@ the domain of f~! is equal to the range of f and the range of
f~1 is equal to the domain of f.
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Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.

Note that:

@ the domain of f~! is equal to the range of f and the range of
f~1 is equal to the domain of f.

o f~Lisread as f inverse.
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Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.

Note that:

@ the domain of f~! is equal to the range of f and the range of
f~1 is equal to the domain of f.

o f~Lisread as f inverse.
o f1(x) #1/f(x)ie f~1(x) is not the same as f(x)~ 1.
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Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.

Note that:

@ the domain of f~! is equal to the range of f and the range of
f~1 is equal to the domain of f.

o f~1isread as f inverse.
o f1(x) #1/f(x)ie f~1(x) is not the same as f(x)~ 1.
o (f1of)(x)=x forall x € D.
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Inverse functions

Definition Suppose that f : D — R is an injective function with
range R. Then the inverse function f~1 : R — D is defined by

f~1(y) = x whenever f(x) = y.

Note that:

@ the domain of f~! is equal to the range of f and the range of
f~1 is equal to the domain of f.

o f~lisread as f inverse.

o f1(x) #1/f(x)ie f~1(x) is not the same as f(x)~ 1.
o (f1of)(x)=x forall x € D.

o (fof H(y)=yforally eR.
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Method for finding inverse functions

Example: Find the inverse of the function f : Rt — R defined by
f(x) = x2.
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Method for finding inverse functions

Example: Find the inverse of the function f : Rt — R defined by
f(x) = x2.
Step 1 Solve y = f(x) for x. We have y = x?> and x > 0 s0 x = ,/y.
Since the domain and range of f is RT, we obtain

fFLRT =R by x=f1(y) =y
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Method for finding inverse functions

Example: Find the inverse of the function f : Rt — R defined by
f(x) = x2.
Step 1 Solve y = f(x) for x. We have y = x?> and x > 0 s0 x = ,/y.
Since the domain and range of f is RT, we obtain

fFLRT =R by x=f1(y) =y

Step 2 Relabel x and y so that y is the dependent variable and x is
the independent variable. This gives:

fFLRT 5 RT by y = F1(x) = vx
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Relationship between graphs of f and !

The graphs of f and f~1 are interchanged by reflection in the line
y = X.
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Relationship between graphs of f and !

The graphs of f and f~1 are interchanged by reflection in the line
y = X.

Example The graphs of f(x) = x? and f~1(x) = v/x.

>

]
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Derivatives of inverse functions

Theorem

Suppose that f : D — R is injective, differentiable and f'(x) # 0
for all x € D. Then f~1 is differentiable and its derivative (f 1)’
satisfies

1y 1
YW= fy

Equivalently, for all b in the domain of f~1 we have

dafF 7t 1

- df :
dx x=b dx x=f—1(b)
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Derivatives of inverse functions

Theorem

Suppose that f : D — R is injective, differentiable and f'(x) # 0
for all x € D. Then f~1 is differentiable and its derivative (f 1)’
satisfies

1y 1
YW= fy

Equivalently, for all b in the domain of f~1 we have

dafF 7t 1

- df :
dx x=b dx x=f—1(b)

Example f : Rt — R by f(x) = x2.
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The Natural Logarithm Function

Definition Consider the function f(x) = x~*. This is continuous
on the closed interval [a, b] for any 0 < a < b.
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The Natural Logarithm Function

Definition Consider the function f(x) = x~*. This is continuous
on the closed interval [a, b] for any 0 < a < b.

The Fundamental Theorem of Calculus (Part 1) now tells us that
F(x) = J; t~'dt is continuous on [a, b] and differentiable on (a, b)
forall 0 < a < b.
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The Natural Logarithm Function

Definition Consider the function f(x) = x~*. This is continuous
on the closed interval [a, b] for any 0 < a < b.

The Fundamental Theorem of Calculus (Part 1) now tells us that
F(x) = J; t~'dt is continuous on [a, b] and differentiable on (a, b)
forall 0 < a < b.

This function F is an important function: it is called the natural
logarithm function and is denoted by In. Thus

X
mx:/tlm.
1
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Properties of the natural logarithm function
lf0<,r<],thenln,r=[%df=—[%aﬂ

gives the negative of this area.

X
Ifx> i,thenlnx:f Lar
1

gives this area.

1\ X

1
Ifx = 1, then Inx :/ Lar=o.
1

The domain of Inx is (0,00) and its derivative is x .
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Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then

Q lhax=Ina-+Inx.
QO Inl=_—Inx
X

a— —
Q In?=Ina—Inx.

Q Inx9 = qlnx for any rational number q.
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Rules for manipulating natural logarithms

Lemma

Suppose a, x are positive real numbers. Then

Q lhax=Ina-+Inx.
QO Inl=_—Inx
X

a— —
Q In?=Ina—Inx.

Q Inx9 = qlnx for any rational number q.

Examples:
©Q In8+Incosx =
2
zc+3
| =
9o
©Q Incotx =

Q Invx—-3=
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Range of the natural logarithm function

The range of Inx is (—o0, 00).
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Range of the natural logarithm function

The range of Inx is (—o0, 00).

Definition The fact that the range of Inx is (—o0, 00) implies in
particular that Inx = 1 for some x € (0,00). The point e for which
Ine =1 is referred to as Euler's constant or the base of the natural
logarithm. lts approximate numerical value is

e = 2.718281828459. ..
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Antiderivatives involving the natural logarithm

We have seen that In x is an antiderivative for 1/x for any interval
I C (0,00). Our next result extends this to all intervals which do
not contain zero.
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Antiderivatives involving the natural logarithm

We have seen that In x is an antiderivative for 1/x for any interval
I C (0,00). Our next result extends this to all intervals which do
not contain zero.

Let | be an interval. If 0 & | then In|x| is an antiderivative for
f(x) =1/x on I. More generally , if g(x) is non-zero and
differentiable on |, then In|g(x)| is an antiderivative for

g'(x)/g(x) on I.
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Antiderivatives involving the natural logarithm

We have seen that In x is an antiderivative for 1/x for any interval
I C (0,00). Our next result extends this to all intervals which do
not contain zero.

Let | be an interval. If 0 & | then In|x| is an antiderivative for
f(x) =1/x on I. More generally , if g(x) is non-zero and
differentiable on |, then In|g(x)| is an antiderivative for

g'(x)/g(x) on I.

Example For x € (—7/2,7/2) we have

/tanxdx =In|secx|+ C
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The Exponential Function

Definition The natural logarithm function is injective and hence is
invertible. Its inverse function exp(x) = In"1(x) is called the
exponential function.
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Properties of the exponential function

The domain of exp x is R and its range is (0,00). The derivative of
exp X IS exp X.

Bill Jackson Calculus |



Powers of e

Recall that 1 = In e where e is Euler's constant.
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Powers of e

Recall that 1 = In e where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

Ine =glne =g

for any g € Q.
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Powers of e

Recall that 1 = In e where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

Ine =glne =g

for any g € Q.
Applying the function exp to both sides gives

e’ =exp(lne?) =expgq

for all g € Q.
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Powers of e

Recall that 1 = In e where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

Ine =glne =g

for any g € Q.
Applying the function exp to both sides gives

e’ =exp(lne?) =expgq

for all g € Q.
Since the right hand side of this equation, exp g, is defined for all
g € R, we can use it to define what e means when x € R\ Q.
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Powers of e

Recall that 1 = In e where e is Euler's constant.
The fourth rule for manipulating natural logarithms now gives

Ine =glne =g

for any g € Q.
Applying the function exp to both sides gives

e’ =exp(lne?) =expgq

for all g € Q.
Since the right hand side of this equation, exp g, is defined for all
g € R, we can use it to define what e means when x € R\ Q.

Definition For every x € R, put ¥ = exp x.
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Rules for manipulating powers of e

The definition of e makes sense only because X = exp x satisfies
the usual rules for powers:

Lemma
Suppose a,b € R. Then
Q - eb — ea+b

Qe =1/
g ea/eb — ea—b
0 (ea)b — eab
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Read

Thomas’ Calculus:

Section 7.7 Inverse trigonometric functions,
and Section 7.8, Hyperbolic functions
You will need this information for

coursework 10!
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