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Substitution in Double Integrals

For functions of one variable it is often useful to integrate by a change of variable, e.g. x =
x(u). The rule is to replace x by x(u) and dx by (dx/du)du and then alter the x-limits to
the u-limits. This is integration by substitution, which gives

I =

∫ x=b

x=a

f(x) dx =

∫ u=u2

u=u1

f(x(u))
dx

du
du ,

where u1 and u2 correspond to the limits a and b such that a = x(u1) and b = x(u2).
The above equation follows straightforwardly if x(u) increases with u. If x(u) is a decreasing

function of u the u-limits are reversed and therefore we have a change of sign:

I =

∫ x=b

x=a

f(x) dx = −
∫ u=u2

u=u1

f(x(u))
dx

du
du .

But dx/du < 0 in this case, so we can combine both cases in one formula:
∫ x=b

x=a

f(x) dx =

∫ u=u2

u=u1

f(x(u))

∣

∣

∣

∣

dx

du

∣

∣

∣

∣

du .

Note that on the right-hand side of this equation the function f(x) is expressed as f(x(u)).
Also, the right-hand side of the equation includes a scaling factor |dx/du|, multiplying the
du; this comes from transforming from dx to du.
For functions of two variables one would similarly expect that the change in variables

x = x(u, v), y = y(u, v)

(for example, for polar coordinates u = r and v = θ) would result in a change in the area
by a scaling factor S such that

dx dy = S du dv .

As an example consider a linear change of coordinates:

x = x(u, v) = au + bv, y = y(u, v) = cu + dv

or
(

x
y

)

=

(

a b
c d

) (

u
v

)

where a, b, c and d are constants.
Let us write M for the transformation matrix composed of a, b, c and d and recall that a
unit square in (u, v) variables has sides

(

u
v

)

=

(

1
0

)

= e1,

(

u
v

)

=

(

0
1

)

= e2

To see what happens to this unit square under the transformation M, just apply M. This
gives

Me1 = e′

1 =

(

a b
c d

) (

1
0

)

=

(

a
c

)

Me2 = e′

2 =

(

a b
c d

) (

0
1

)

=

(

b
d

)

where (a, c) and (b, d) represent the coordinates of the new corners in the (x, y) plane:
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u

v

e1

e2

(u=0,v=1)

(u=1,v=0)

(u=1,v=1)

x

y

(b, d)

(a, c)

(a+b, c+d)

e1

e2 P

(a) (b)

Therefore, under the transformation M we find that the unit square in (u, v) based on e1,
e2 is transformed into the parallelogram in (x, y) based on e′

1, e′

2.

Note from the matrix and the diagram that the point (1, 1) in (u, v) transforms to the point
(a + b, c + d) in (x, y).

Let us calculate the area of the parallelogram P :

x

y

P

b a

a

c c

d

d

c c

b

b

b

R

R

T
1

T
1

T
2

T
2

We have

Area P = [Total area of rectangle]

− [Area of 2 pairs of equal triangles T1 and T2]

− [Area of 2 rectangles R] .

Therefore,

Area P = (a + b)(c + d) − 2 · 1

2
ac − 2 · 1

2
bd − 2bc

= ad − bc = det

(

a b
c d

)

= detM

In view of the equation dx dy = S du dv one may understand this result such that the unit
square of area du dv gets multiplied by a factor of S = detM. The same argument shows
that a small rectangle of sides du and dv with area du dv also gets multiplied by S = detM.
Therefore, for a linear change of variables a small rectangular area du dv in the (u, v) plane
is transformed into the parallelogram area dx dy = detM du dv in the (x, y) plane.
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Now let us consider a nonlinear change of coordinates. We take the transformation to have
the form

x = x(u, v), y = y(u, v) ,

where according to the total differential the increments in x and y are given by

dx =
∂x

∂u
du +

∂x

∂v
dv

dy =
∂y

∂u
du +

∂y

∂v
dv

or, in matrix form,
(

dx
dy

)

=

(

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

) (

du
dv

)

.

The Jacobian matrix is defined to be

M(u, v) =

(

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)

and the Jacobian determinant, or Jacobian,

∂(x, y)

∂(u, v)
= detM(u, v) .

This suggests that for a nonlinear change of variables we also have that a rectangular area
du dv in the (u, v) plane) is transformed into the (deformed) ‘parallelogram’ area detMdu dv
in the (x, y) plane.

u
u

u

v

v

u+!u

u+!u

v+!v

v+!v
v

x

y(a) (b)

R
R'

(with du = δu dv = δv)

Therefore, the required formula for double integrals under a change of variables is:

∫ ∫

R

f(x, y) dx dy =

∫ ∫

R′

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

where
∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

= |detM|

can be thought of as the scaling factor S.
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Note that | · | denotes the absolute value of the determinant of the matrix, i.e., the modulus
as in the one variable case. This may not be confused with the case of a matrix, where
vertical lines on either side denote the determinant. For example, if we let

A =

(

a b
c d

)

then

detA =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − bc

and
|detA| = |ad − bc| .

Example:

Evaluate the integral

I =

∫ ∫

R

(x2 + y2) dx dy

where R is a circle x2 + y2 ≤ a2, by changing to polar coordinates.
In polar coordinates we have

x = r cos θ, y = r sin θ .

Therefore, taking u = r and v = θ, we can write the Jacobian matrix as

M =

(

∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)

=

(

cos θ −r sin θ
sin θ r cos θ

)

and the Jacobian determinant is

detM =
∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

= r
(

cos2 θ + sin2 θ
)

= r

where here and in the following we assume r ≥ 0, so we do not need to take the absolute
value. The original area R and the transformed area R′ are shown below:

r
a

!

x

y(a) (b)

R R'

0

2"

a

Note that the circle in the (x, y) plane transforms into a rectangle in the (r, θ) plane. Here
R is the region given by x2 + y2 ≤ a2 and R′ is the region given by 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.
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Therefore

I =

∫ ∫

R

(x2 + y2) dx dy =

∫ ∫

R′

(

r2
)

(r) dr dθ

where the r2 on the right-hand integral comes from the transformed x2 + y2 and the r dr dθ
is from the transformed dx dy with r coming from the Jacobian determinant detM. Hence

I =

∫ r=a

r=0

∫ θ=2π

θ=0

r3 dθ dr =

(
∫ r=a

r=0

r3 dr

) (
∫ θ=2π

θ=0

dθ

)

=
πa4

2
,

where we note that the integral is separable.

Example:

Evaluate the double integral
∫ 4

0

∫ x=y/2+1

x=y/2

2x − y

2
dx dy

by applying the transformation u = (2x−y)/2, v = y/2 and integrating over an appropriate
region of the u-v plane.
The region R in the x-y-plane looks as follows:

The corresponding region G in the u-v plane can be obtained by first writing x and y in
terms of u and v as x = u + v and y = 2v.
The boundaries of G are then found by substituting these equations for the boundaries of
R:

The Jacobian of the transformation is

detM(u, v) =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(u + v)/∂u ∂(u + v)/∂v
∂(2v)/∂u ∂(2v)/∂v

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
0 2

∣

∣

∣

∣

= 2 .
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and we get

∫ 4

0

∫ x=(y/2)+1

x=y/2

2x − y

2
dx dy =

∫ v=2

v=0

∫ u=1

u=0

u |detM(u, v)| du dv =

∫ v=2

v=0

∫ u=1

u=0

u · 2 du dv = 2

Note that for invertible transformations

∂(x, y)

∂(u, v)
=

(

∂(u, v)

∂(x, y)

)

−1

, (1)

as you have seen in Calculus 1 for a function of one variable. This can be useful in solving
some problems.

Example:

Evaluate the integral

I =

∫ ∫

R

1 · dx dy

(i.e. the area of the region R) where R is enclosed by y2 = x, y2 = 2x, xy = 1 and xy = 2.

10
0

2

1

2 y2=2x

y2=x

xy=2

xy=1

R

0
0

R'

u

v

u=1

v=1

v=2

u=2

(a) (b)

x

y

To solve the integral consider the change of variables defined by

u = y2/x, v = xy .

Then we can write the four bounding curves as

y2 = x ⇔ u = 1, y2 = 2x ⇔ u = 2, xy = 1 ⇔ v = 1, xy = 2 ⇔ v = 2 .

So the region becomes a square (the region R′ in part (b) of the above figure).
Now, for the Jacobian determinant it is easier to use Eq. (1) above. So, to calculate
∂(x, y)/∂(u, v) we first calculate ∂(u, v)/∂(x, y) and then take the inverse. Using u = y2/x
and v = xy we have

∂(u, v)

∂(x, y)
=

∣

∣

∣

∣

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣

∣

∣

∣

=

∣

∣

∣

∣

−y2/x2 2y/x
y x

∣

∣

∣

∣

= −3
y2

x
= −3u .

Therefore, using Eq. (1),

∂(x, y)

∂(u, v)
=

(

∂(u, v)

∂(x, y)

)

−1

= − 1

3u
.
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Hence

I =

∫ ∫

R

1 · dx dy =

∫ ∫

R′

1 ·
∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv

=

∫ ∫

R′

∣

∣

∣

∣

− 1

3u

∣

∣

∣

∣

du dv =
1

3

∫ u=2

u=1

∫ v=2

v=1

1

u
dv du

=
1

3

∫ u=2

u=1

[v

u

]v=2

v=1
du

=
1

3

∫ u=2

u=1

1

u
du =

1

3
[ln u]u=2

u=1 =
ln 2

3

Reading assignment: Work yourself through the following example.

Example:

Evaluate the integral
∫

∞

−∞

e−x2/2dx .

If we call this integral I, we can write

I2 =

(
∫

∞

−∞

e−x2/2dx

) (
∫

∞

−∞

e−y2/2dy

)

=

∫

∞

−∞

∫

∞

−∞

e−(x2+y2)/2dx dy .

Now transform to polar coordinates with the limits 0 ≤ r < ∞ and −π ≤ θ ≤ π. This gives

I2 =

∫ π

−π

∫

∞

0

e−r2/2

∣

∣

∣

∣

∂(x, y)

∂(r, θ)

∣

∣

∣

∣

dr dθ =

∫ π

−π

∫

∞

0

r e−r2/2 dr dθ

=

∫ π

−π

[

−e−r2/2
]

∞

0
dθ =

∫ π

−π

((0) − (−1)) dθ =

∫ π

−π

dθ = 2π .

Hence I =
√

2π.
Note that the probability density function for a normal (or Gaussian) distribution is

ϕ(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2)

for mean µ and standard deviation σ. If we write t = (x−µ)/σ (i.e. express the displacement
from the mean in terms of the standard deviation) then the total probability is

P =
1

σ
√

2π

∫

∞

−∞

e−(x−µ)2/(2σ2)dx =
1

σ
√

2π

∫

∞

−∞

e−t2/2σ dt

=
1√
2π

∫

∞

−∞

e−t2/2 dt = 1 . (by our previous result)


